elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

CISNet: Change information guided semantic segmentation network for automatic extraction of glacier calving fronts

Zhao, Ji und Tong, Jiayu und Li, Tianhong und Sun, Yao und Shao, Changliang und Dong, Yuting (2025) CISNet: Change information guided semantic segmentation network for automatic extraction of glacier calving fronts. ISPRS Journal of Photogrammetry and Remote Sensing, 228, Seiten 666-678. Elsevier. doi: 10.1016/j.isprsjprs.2025.08.001. ISSN 0924-2716.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0924271625003120

Kurzfassung

The movement of the glacier calving front indicates changes in the mass balance of the glacier and is crucial for analyzing trends in global sea level changes. The launch of a large number of remote-sensing satellites has led to the generation of massive number of images that have enabled the application of deep-learning-based methods. However, existing methods generally focus solely on individual images and do not explore the relationships between glacier images. Therefore, this study proposes a change information-guided semantic segmentation network (CISNet) to explore category semantic relationships in glacier images by linking semantic segmentation with change information extraction tasks. In CISNet, we established a dual-branch architecture consisting of semantic segmentation and change information extraction using a weight-shared feature extraction module. U-ConvNextV2 was developed to extract multi-scale features of different classes in glacier images by integrating a high-performance feature-extraction module with the UNet effective framework. Its multi-scale feature fusion architecture based on skip connections ensures accurate segmentation of glacier semantics. To explore the relationships between different images, a pairwise change information extraction branch was used to extract consistent and inconsistent relationships from any image pair. The global random matching strategy for constructing image pairs enhanced the ability of the network to extract the features of glaciers and oceans. To improve the integration of the semantic features and change information during the training phase, an adaptive joint loss was proposed to dynamically adjust the optimization process of the two branches. Extensive experiments were conducted using the latest publicly available large-scale CaFFe dataset to validate this method, and CISNet outperformed the state-of-the-art deep-learning methods with a mean distance error (MDE) of 398 ± 43 m. To further validate the ability of CISNet to generalize across glaciers and regions, we selected data from a glacier area as the training dataset and the rest as the test set to construct a challenging CaFFe-SI dataset. In the CaFFe-SI experiment, CISNet achieved the best MDE of 888 ± 21 m and demonstrated a comprehensive superiority across the other evaluation metrics.

elib-URL des Eintrags:https://elib.dlr.de/218270/
Dokumentart:Zeitschriftenbeitrag
Titel:CISNet: Change information guided semantic segmentation network for automatic extraction of glacier calving fronts
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zhao, JiSchool of Computer Science, China University of GeoscienceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tong, JiayuSchool of Computer Science, China University of GeoscienceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Li, TianhongSchool of Geography and Information EngineeringNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sun, Yaoyao.sun (at) dlr.dehttps://orcid.org/0000-0003-2757-1527NICHT SPEZIFIZIERT
Shao, ChangliangChina Meteorological Administration Meteorological Observation CenterNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dong, YutingSchool of Geography and Information EngineeringNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:7 August 2025
Erschienen in:ISPRS Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:228
DOI:10.1016/j.isprsjprs.2025.08.001
Seitenbereich:Seiten 666-678
Verlag:Elsevier
ISSN:0924-2716
Status:veröffentlicht
Stichwörter:Convolutional neural network, Deep learning, Glacier calving front segmentation, Semantic segmentation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung, V - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Sun, Yao
Hinterlegt am:06 Nov 2025 10:17
Letzte Änderung:06 Nov 2025 10:17

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.