Sievers, Leon Tim Engelbert und Maldonado Quinto, Daniel und Hoffschmidt, Bernhard (2025) Towards more reliable flux density prediction using uncertainty quantification of neural networks. Solar Energy, 300, Seite 113739. Elsevier. ISSN 0038-092X.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.sciencedirect.com/journal/solar-energy
Kurzfassung
Solar tower power plants represent a renewable source of dispatchable energy. By concentrating incoming sunlight via tens of thousands of heliostats, they render large amounts of energy in the form of heat that is usable as a source of electricity or in an industrial context. In this work, we propose an uncertainty-aware prediction framework using Monte-Carlo Dropout and a random forest classifier to flag unreliable flux predictions of said heliostats. Precise knowledge about the shape and position of the heliostat’s reflections is crucial to an efficient and safe operation of the plant. As their facets exhibit surface imperfections and the reflections span distances of hundreds of meters, the flux density distributions generated by a heliostat’s reflection on the receiver differ greatly from an assumed ideal. Occlusion caused by shading or blocking, rare misalignment scenarios or extreme flux distributions represent edge cases for flux density prediction. Therefore, each heliostat bears an individual behavior concerning the produced flux density distribution. To predict this individual behavior, researchers have employed data-driven methods showing an improvement over state-of-the-art approaches by allowing a seamless integration into the calibration process of the camera-target method using the same calibration images as training data. Their approach shows strong performance, with an error analysis yielding an estimate of 4.5%, where the neural network contributes 1.5%. However, the analysis uses the network’s mean training error as a component, leaving edge cases unanswered. As neural networks are uninterpretable models, their integration into safety-critical operations requires thorough uncertainty analysis. In our work, our aim is to equip the data-driven approach with a layer of security by reasoning about network uncertainties, resulting in an algorithm that filters out certain samples to increase the predictive qualities of the overall process.
| elib-URL des Eintrags: | https://elib.dlr.de/218168/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
| Titel: | Towards more reliable flux density prediction using uncertainty quantification of neural networks | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 1 November 2025 | ||||||||||||||||
| Erschienen in: | Solar Energy | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| Band: | 300 | ||||||||||||||||
| Seitenbereich: | Seite 113739 | ||||||||||||||||
| Herausgeber: |
| ||||||||||||||||
| Verlag: | Elsevier | ||||||||||||||||
| ISSN: | 0038-092X | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Flux Density Neural Nets encode more data than they use for prediction. • Uncertainty metrics explain faults, yielding up to 80% F1 scores in fault detection. • Solar power tower Heliostat Deep learning Flux density prediction Uncertainty quantification | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt SKIAS 2.0 | ||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Solarforschung > Konzentrierende Solartechnologien | ||||||||||||||||
| Hinterlegt von: | Sievers, Leon | ||||||||||||||||
| Hinterlegt am: | 30 Okt 2025 09:26 | ||||||||||||||||
| Letzte Änderung: | 30 Okt 2025 09:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags