elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Towards more reliable flux density prediction using uncertainty quantification of neural networks

Sievers, Leon Tim Engelbert und Maldonado Quinto, Daniel und Hoffschmidt, Bernhard (2025) Towards more reliable flux density prediction using uncertainty quantification of neural networks. Solar Energy, 300, Seite 113739. Elsevier. ISSN 0038-092X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://www.sciencedirect.com/journal/solar-energy

Kurzfassung

Solar tower power plants represent a renewable source of dispatchable energy. By concentrating incoming sunlight via tens of thousands of heliostats, they render large amounts of energy in the form of heat that is usable as a source of electricity or in an industrial context. In this work, we propose an uncertainty-aware prediction framework using Monte-Carlo Dropout and a random forest classifier to flag unreliable flux predictions of said heliostats. Precise knowledge about the shape and position of the heliostat’s reflections is crucial to an efficient and safe operation of the plant. As their facets exhibit surface imperfections and the reflections span distances of hundreds of meters, the flux density distributions generated by a heliostat’s reflection on the receiver differ greatly from an assumed ideal. Occlusion caused by shading or blocking, rare misalignment scenarios or extreme flux distributions represent edge cases for flux density prediction. Therefore, each heliostat bears an individual behavior concerning the produced flux density distribution. To predict this individual behavior, researchers have employed data-driven methods showing an improvement over state-of-the-art approaches by allowing a seamless integration into the calibration process of the camera-target method using the same calibration images as training data. Their approach shows strong performance, with an error analysis yielding an estimate of 4.5%, where the neural network contributes 1.5%. However, the analysis uses the network’s mean training error as a component, leaving edge cases unanswered. As neural networks are uninterpretable models, their integration into safety-critical operations requires thorough uncertainty analysis. In our work, our aim is to equip the data-driven approach with a layer of security by reasoning about network uncertainties, resulting in an algorithm that filters out certain samples to increase the predictive qualities of the overall process.

elib-URL des Eintrags:https://elib.dlr.de/218168/
Dokumentart:Zeitschriftenbeitrag
Titel:Towards more reliable flux density prediction using uncertainty quantification of neural networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sievers, Leon Tim Engelbertl.sievers (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Maldonado Quinto, DanielDaniel.MaldonadoQuinto (at) dlr.dehttps://orcid.org/0000-0003-2929-8667195570865
Hoffschmidt, BernhardBernhard.Hoffschmidt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:1 November 2025
Erschienen in:Solar Energy
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:300
Seitenbereich:Seite 113739
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Ho, CliffordSandia National Laboratories, Albuquerque, NMNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Elsevier
ISSN:0038-092X
Status:veröffentlicht
Stichwörter:Flux Density Neural Nets encode more data than they use for prediction. • Uncertainty metrics explain faults, yielding up to 80% F1 scores in fault detection. • Solar power tower Heliostat Deep learning Flux density prediction Uncertainty quantification
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt SKIAS 2.0
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Solarforschung > Konzentrierende Solartechnologien
Hinterlegt von: Sievers, Leon
Hinterlegt am:30 Okt 2025 09:26
Letzte Änderung:30 Okt 2025 09:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.