elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Rapid domain adaptation for disaster impact assessment: Remote sensing of building damage after the 2021 Germany floods

Hertel, Victor und Geiß, Christian und Wieland, Marc und Taubenböck, Hannes (2025) Rapid domain adaptation for disaster impact assessment: Remote sensing of building damage after the 2021 Germany floods. Science of Remote Sensing, 12 (100287), Seiten 1-20. Elsevier. doi: 10.1016/j.srs.2025.100287. ISSN 2666-0172.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
15MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2666017225000938?via%3Dihub

Kurzfassung

The extent of building damage is a crucial indicator for guiding post-disaster relief strategies and rescue operations. However, diverse built environments and variations in imaging setups pose significant challenges for rapid, automated damage assessment from remote sensing data, leading to strong domain shifts and significantly reduced performance of pre-trained models. To align advanced domain adaptation techniques with the practical constraints of rapid mapping, we evaluate and propose techniques that effectively balance accuracy, resource efficiency, and operational applicability. By employing a Siamese multitask fusion network for semantic segmentation and change detection, we introduce a novel experimental approach that quantifies the influence of a priori information on domain adaptation performance. All strategies are benchmarked on a fully labeled dataset from the 2021 Germany floods. Our evaluation includes class-specific accuracy improvements, model tendencies toward over- or underestimation of damage, and resource requirements in terms of processing time, human capacity, and computational demands. Scenario-based recommendations are provided to assist in selecting the most suitable method for given conditions. All adopted techniques significantly improved model performance in a short time, achieving up to 86 % of the potential performance gain compared to supervised learning. Supervised domain adaptation with minimal annotations per class emerged as the most effective method for immediate action. Semi-supervised domain adaptation, coupled with an automatic labeling strategy based on hazard intensity, provided the highest performance improvements while maintaining low demands on time and human resources. Purely semi-supervised domain adaptation turned out time-consuming and computationally expensive, therefore advisable only under specific conditions with sufficient time or in the absence of human capacity.

elib-URL des Eintrags:https://elib.dlr.de/217981/
Dokumentart:Zeitschriftenbeitrag
Titel:Rapid domain adaptation for disaster impact assessment: Remote sensing of building damage after the 2021 Germany floods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hertel, VictorVictor.Hertel (at) dlr.dehttps://orcid.org/0000-0002-9207-7632NICHT SPEZIFIZIERT
Geiß, ChristianChristian.Geiss (at) dlr.dehttps://orcid.org/0000-0002-7961-8553NICHT SPEZIFIZIERT
Wieland, MarcMarc.Wieland (at) dlr.dehttps://orcid.org/0000-0002-1155-723XNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:2025
Erschienen in:Science of Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:12
DOI:10.1016/j.srs.2025.100287
Seitenbereich:Seiten 1-20
Verlag:Elsevier
ISSN:2666-0172
Status:veröffentlicht
Stichwörter:Domain adaptation; Rapid mapping; Semantic segmentation; Siamese multitask fusion network; Building damage assessment; Crisis information management
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Hertel, Victor
Hinterlegt am:28 Okt 2025 12:51
Letzte Änderung:28 Okt 2025 12:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.