elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Multi-label Learning with ViT for Building Footprint Extraction from Off-Nadir Aerial Images

Neupane, Bipul und Aryal, Jagannath und Rajabifard, Abbas und Aravena Pelizari, Patrick und Geiß, Christian (2025) Multi-label Learning with ViT for Building Footprint Extraction from Off-Nadir Aerial Images. IEEE Geoscience and Remote Sensing Letters, 22, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2025.3532589. ISSN 1545-598X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://doi.org/10.1109/LGRS.2025.3532589

Kurzfassung

The building footprint extraction (BFE) from aerial images is important for the creation and continuous monitoring of building inventories useful for urban planning, among others. Existing methods frequently extract roofs of buildings from aerial images assuming that they overlap with the footprint. This assumption does not hold in the case of off-nadir images. This letter proposes a novel multilabel learning of oblique building features—footprint, roof, and shape—with a Vision Transformer (ViT) for accurate BFE from off-nadir aerial images. A shape calculation algorithm is developed to derive shape polygons from the existing footprint and roof polygons. The method is compared with several convolutional neural networks (CNNs) and ViTs, and a postprocessing algorithm is further devised to achieve regular building footprint polygons. The proposed method outperforms existing scores of BFE on the BONAI dataset (0.727 versus 0.643F1), and our shape calculation algorithm provides labels as accurate as Segment Anything 2 without the need for a GPU. The results conclude that models trained with shapes in addition to the footprint and roof provide consecutively higher scores (F1 score: 0.747 w/ shape versus 0.727 w/o shape versus 0.682 w/ only footprint) and substantially improve the BFE on off-nadir images. The codes and datasets are available at: https://github.com/bipulneupane/Multilabel-BONAI/.

elib-URL des Eintrags:https://elib.dlr.de/217978/
Dokumentart:Zeitschriftenbeitrag
Titel:Multi-label Learning with ViT for Building Footprint Extraction from Off-Nadir Aerial Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Neupane, BipulDepartment of Infrastructure Engineering Earth Observation and AI Research Group The University of Melbourne, Melbourne, VIC, AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Aryal, JagannathDepartment of Infrastructure Engineering, Earth Observation and AI Research Group, The University of Melbourne, Melbourne, VIC, AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rajabifard, AbbasDepartment of Infrastructure Engineering, Faculty of Engineering and IT (FEIT), The University of Melbourne, Melbourne, VIC, AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Aravena Pelizari, PatrickPatrick.AravenaPelizari (at) dlr.dehttps://orcid.org/0000-0003-0984-4675195376266
Geiß, ChristianChristian.Geiss (at) dlr.dehttps://orcid.org/0000-0002-7961-8553NICHT SPEZIFIZIERT
Datum:2025
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:22
DOI:10.1109/LGRS.2025.3532589
Seitenbereich:Seiten 1-5
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:building footprints, multilabel learning, remote sensing, urban mapping.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Geiß, Christian
Hinterlegt am:28 Okt 2025 12:49
Letzte Änderung:25 Nov 2025 12:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.