Pandit, Prakul und Kanagasenthinathan, Sugan und Rege, Ameya Govind (2025) 3D Microstructure Reconstruction of Aerogels via Conditional GANs. ICLR 2025, 2025-04-24 - 2025-04-28, Singapore.
|
PDF
4MB |
Offizielle URL: https://openreview.net/forum?id=ez0PCVfrY7
Kurzfassung
Aerogels are low-density and highly porous materials (90–99% porosity) with exceptional thermal and mechanical properties, governed by their intricate nanoporous microstructure. Understanding their structure-property relationships is essential for optimizing their performance across industrial applications. A sig- nificant challenge appears in precisely identifying the complete pore space and thus mapping their microstructural morphology of aerogels. This work presents a deep learning-driven digital twin framework for aerogels, leveraging Conditional Generative Adversarial Networks (cGANs) and Convolutional Neural Networks (CNNs) for 3D microstructure reconstruction and predictive modeling. Our ap- proach reconstructs 3D aerogel microstructures from synthetic 2D scanning elec- tron microscopy (SEM) images that mimic real samples by incorporating depth effects. A CNN predicts key microstructural parameters, including pore radius, relative density, and pore size distribution, with minimal error. A 3D cGAN then generates aerogel microstructures by capturing global spatial features and conditioning on the extracted parameters. We demonstrate that conditioning improves the fidelity of reconstruction by en- forcing physically meaningful constraints. This method provides a scalable, data- driven approach for microstructure modeling, enabling efficient structure-property predictions, and guiding aerogel design for targeted applications.
| elib-URL des Eintrags: | https://elib.dlr.de/217937/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
| Titel: | 3D Microstructure Reconstruction of Aerogels via Conditional GANs | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2025 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | generative AI, Aerogels, GAN | ||||||||||||||||
| Veranstaltungstitel: | ICLR 2025 | ||||||||||||||||
| Veranstaltungsort: | Singapore | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 24 April 2025 | ||||||||||||||||
| Veranstaltungsende: | 28 April 2025 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement | ||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Aerogele und Aerogelverbundwerkstoffe | ||||||||||||||||
| Hinterlegt von: | Pandit, Prakul | ||||||||||||||||
| Hinterlegt am: | 03 Dez 2025 08:52 | ||||||||||||||||
| Letzte Änderung: | 03 Dez 2025 08:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags