elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

How do convective cold pools influence the atmospheric boundary layer near two wind turbines in northern Germany?

Thayer, Jeffrey D. und Kilroy, Gerard und Wildmann, Norman (2025) How do convective cold pools influence the atmospheric boundary layer near two wind turbines in northern Germany? Wind Energy Science, 10 (10), Seiten 2237-2255. Copernicus Publications. doi: 10.5194/wes-10-2237-2025. ISSN 2366-7443.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://dx.doi.org/10.5194/wes-10-2237-2025

Kurzfassung

With increasing wind energy in the German energy grid, it is crucial to better understand how particular atmospheric phenomena can impact wind turbines and the surrounding atmospheric boundary layer. Deep convection is one source of uncertainty for wind energy prediction, with the near-surface convective outflow (i.e., cold pool) causing rapid kinematic and thermodynamic changes that are not adequately captured by operational weather models. Using 1 min meteorological mast and remote sensing vertical profile observations from the WiValdi research wind park in northern Germany, we detect and characterize 120 convective cold-pool passages over a period of 4 years in terms of their temporal evolution and vertical structure. We particularly focus on variations in wind-energy-relevant variables (wind speed and direction, turbulence strength, shear, veer, and static stability) within the turbine rotor layer (34–150 m height) to isolate cold-pool impacts that are critical for wind turbine operations. Near hub height (92 m) during the gust front passage, there are relatively increased wind speeds of up to +4 m s−1 in addition to the background flow, a relative wind direction shift of up to +15°, and increased turbulence strength for a median cold pool. Given hub-height wind speeds lying within the partial load region of the power curve for the detected cases, there is an increase in estimated power of up to 50 %, which lasts for 30 min. We find a “nose shape” in relative wind speeds and virtual potential temperature (θv) at hub height during gust front passages, with larger wind direction changes closer to the surface. This manifests as asymmetric fluctuations in positive shear, negative veer, and static stability across the rotor layer, with relative variations below hub height at least twice as large compared with above hub height and temporarily opposite signs for stability that have complex implications for turbine wakes. Doppler wind lidar profiles indicate that kinematic changes associated with the gust front extend to a height of 700–800 m, providing an estimate for cold-pool depth and highlighting that cold-pool impacts would typically extend beyond the height of current onshore wind turbines. After the cold-pool gust front passage, there is gradually increasing static stability, with a median decrease in near-surface θv of −2.7 K, a gradual decrease in hub-height turbulence strength, and faster recovery of wind speed than wind direction.

elib-URL des Eintrags:https://elib.dlr.de/217857/
Dokumentart:Zeitschriftenbeitrag
Titel:How do convective cold pools influence the atmospheric boundary layer near two wind turbines in northern Germany?
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Thayer, Jeffrey D.DLR, IPAhttps://orcid.org/0000-0001-8039-9725194765313
Kilroy, GerardDLR, IPANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wildmann, NormanDLR, IPAhttps://orcid.org/0000-0001-9475-4206NICHT SPEZIFIZIERT
Datum:17 Oktober 2025
Erschienen in:Wind Energy Science
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:10
DOI:10.5194/wes-10-2237-2025
Seitenbereich:Seiten 2237-2255
Verlag:Copernicus Publications
ISSN:2366-7443
Status:veröffentlicht
Stichwörter:Thunderstorms, wind energy, convective cold pools, atmospheric boundary layer
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Photovoltaik und Windenergie
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Windenergie
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Angewandte Meteorologie
Hinterlegt von: Thayer, Jeffrey Dale
Hinterlegt am:21 Okt 2025 13:03
Letzte Änderung:22 Okt 2025 09:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.