Siering, Timo und Steidel, Matthias und Steger, Christian (2025) Automatic Identification of Static Harbor Objects Based on Camera Images from a Highly Autonomous Dredger Ship. Journal of Marine Science and Engineering, 13 (10). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/jmse13102015. ISSN 2077-1312.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.mdpi.com/2077-1312/13/10/2015
Kurzfassung
Possible collisions with port infrastructure are a big challenge in the automation of commercial shipping. The first step to avoiding these collisions is identifying static port infrastructure. To minimize the risk of collisions of automated vessels with port infrastructure, this study aims to develop a model for automatically detecting static harbor objects (quay walls and piles) in port areas using a YOLOv5-based deep learning architecture. The existing architecture is adapted by generating a port-specific image dataset using image obfuscation techniques that simulate real-world operational scenarios, additionally improving robustness. To determine optimal hyperparameters, such as image resolution, batch size, or selection of optimization algorithm, multiple experiments were conducted and evaluated. As the proposed system is used in a time critical environment, the evaluation is performed on the basis of model performance as well as inference time.
| elib-URL des Eintrags: | https://elib.dlr.de/217848/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
| Titel: | Automatic Identification of Static Harbor Objects Based on Camera Images from a Highly Autonomous Dredger Ship | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 21 Oktober 2025 | ||||||||||||||||
| Erschienen in: | Journal of Marine Science and Engineering | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| Band: | 13 | ||||||||||||||||
| DOI: | 10.3390/jmse13102015 | ||||||||||||||||
| Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
| ISSN: | 2077-1312 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | deep learning; autonomous vessel; object detection | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - Digitaler Atlas 2.0 | ||||||||||||||||
| Standort: | Oldenburg | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > Sichere Automation Maritimer Systeme | ||||||||||||||||
| Hinterlegt von: | Steger, Christian | ||||||||||||||||
| Hinterlegt am: | 26 Nov 2025 06:17 | ||||||||||||||||
| Letzte Änderung: | 26 Nov 2025 06:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags