elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

OPTICAL ANALYSIS OF TURBULENT SUPERSTRUCTURES IN THERMAL CONVECTION USING TEMPERATURE SENSITIVE PAINT

Bo, Alessandro (2025) OPTICAL ANALYSIS OF TURBULENT SUPERSTRUCTURES IN THERMAL CONVECTION USING TEMPERATURE SENSITIVE PAINT. Masterarbeit, University of Bologna, Bologna.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://amslaurea.unibo.it/

Kurzfassung

Rayleigh-Bénard convection (RBC) refers to a family of flows generated in a horizontally extended volume with adiabatic sidewalls, wherein the fluid is uniformly heated from below and cooled from above. The resulting fluid motion depends on the system’s Rayleigh number (Ra), Prandtl number (Pr), and aspect ratio (Γ = L/H) between the lateral extension L and the height of the fluid layer H. Typical for the turbulent regime under strong thermal driving is the occurrence of coherent large-scale structures. Specifically, at small Γ, the flow is dominated by “LargeScale Circulations” (LSC), which involve strong sidewall interactions. At higher Γ, as sidewall effects become negligible, so-called “Turbulent Superstructures” (TSS) evolve. This study addresses the long-term development of temperature fields in RBC using a shallow water tank with a heated aluminium base and a water-cooled glass top plate. Variable sidewalls allow the control of Γ (ranging from 4 to 32). With an experimental setup incorporating temperature sensitive paint (TSP) with associated UV-LED illumination (λab ∼ 395 nm) and CCD camera, TSS were observed and studied via their thermal footprint on the top plate for Ra in the range 2.6 × 10^4 < Ra < 1.2 × 10^8. The application of TSP to slowly evolving flows like RBC, with the paint submerged in water for extended periods, represents an innovation in experimental fluid dynamics and comes along with novel challenges. The thesis, carried out at the Department of Experimental Methods within the Institute of Aerodynamics and Flow Technology at DLR Göttingen, Germany, aims to address these challenges and improve the accuracy of the measurements. The work primarily focuses on the development of an accurate calibration method to convert TSP intensity data to temperature. A preliminary analysis of temperature fields is also conducted, including the investigation of the transition from LSC to TSS, achieved by analysis of Probability Density Function (PDF) of temperature fluctuations.

elib-URL des Eintrags:https://elib.dlr.de/217824/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:OPTICAL ANALYSIS OF TURBULENT SUPERSTRUCTURES IN THERMAL CONVECTION USING TEMPERATURE SENSITIVE PAINT
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bo, AlessandroUniversity of Bologna, Bologna, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorBosbach, JohannesJohannes.Bosbach (at) dlr.dehttps://orcid.org/0000-0002-1531-127X
Thesis advisorBellani, GabrielleUniv. BolognaNICHT SPEZIFIZIERT
Datum:30 Oktober 2025
Erschienen in:AMSLaurea - Institutional Theses Repository
Open Access:Nein
Seitenanzahl:63
Status:veröffentlicht
Stichwörter:Rayleigh-Bénard convection, Temperature Sensitive Paint, Large Scale Circulations, Turbulent Superstructures
Institution:University of Bologna, Bologna
Abteilung:SCUOLA DI INGEGNERIA E ARCHITETTURA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Flugzeug und Validierung
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO
Hinterlegt von: Micknaus, Ilka
Hinterlegt am:21 Okt 2025 15:51
Letzte Änderung:21 Okt 2025 15:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.