elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Development and Evaluation of a Chatbot to Support Pre-Mission Planning in a Launch and Re-entry Coordination Center Using Retrieval-Augmented Generation (RAG) Artificial intelligence (AI) in the context of safe and efficient air traffic management

Hampe, Jens (2025) Development and Evaluation of a Chatbot to Support Pre-Mission Planning in a Launch and Re-entry Coordination Center Using Retrieval-Augmented Generation (RAG) Artificial intelligence (AI) in the context of safe and efficient air traffic management. In: DLRK 2025. DLRK 2025, 2025-09-23 - 2025-09-25, Augsburg.

[img] PDF
1MB

Offizielle URL: https://dlrk2025.dglr.de/fileadmin/inhalte/veranstaltungen/dlrk/dlrk2025/Programm/Postersitzung/DLRK2025_650345.pdf

Kurzfassung

The growing number of orbital launch and re-entry operations demands precise and well-coordinated planning, particularly by institutions such as a Launch and Re-entry Coordination Center. In the premission phase, fast and reliable access to mission-critical knowledge is essential to ensure safe and efficient coordination. This work presents the development of an AI-based chatbot that supports planning activities by providing relevant information on demand. The chatbot utilizes RetrievalAugmented Generation (RAG), a technique that combines generative language models with document-based information retrieval. This allows for the generation of context-specific responses grounded in domain-specific resources such as coordination procedures, mission documentation, and regulatory requirements. The technical implementation is based on a modular RAG stack consisting of a vector database, retriever, and LLM component. The evaluation focuses on system architecture, response quality, context relevance, and user acceptance. Initial tests in a simulated coordination environment indicate that the chatbot can reliably answer typical pre-mission planning queries, contributing to more efficient workflows and error reduction. The results highlight the potential of LLM-based assistance systems in safety-critical space coordination tasks and provide a basis for further automation in mission planning and operational support.

elib-URL des Eintrags:https://elib.dlr.de/217778/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Development and Evaluation of a Chatbot to Support Pre-Mission Planning in a Launch and Re-entry Coordination Center Using Retrieval-Augmented Generation (RAG) Artificial intelligence (AI) in the context of safe and efficient air traffic management
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hampe, JensJens.Hampe (at) dlr.dehttps://orcid.org/0000-0003-3105-1516NICHT SPEZIFIZIERT
Datum:23 September 2025
Erschienen in:DLRK 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Name der Reihe:Sondersitzung: Nationaler und lokaler Zugang zum Weltraum
Status:veröffentlicht
Stichwörter:Launch and Re-entry, Space Operations Coordination, Pre-Mission Planning, Artificial Intelligence, Language Model, Retrieval-Augmented Generation, Coordination Center, Decision Support, Automation, Human-Machine Interaction, Space Mission Management
Veranstaltungstitel:DLRK 2025
Veranstaltungsort:Augsburg
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:23 September 2025
Veranstaltungsende:25 September 2025
Veranstalter :DGLR - Deutsche Gesellschaft für Luft- und Raumfahrt
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - Managementaufgaben Luftfahrt
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > ATM-Simulation
Hinterlegt von: Hampe, Jens
Hinterlegt am:23 Okt 2025 08:48
Letzte Änderung:23 Okt 2025 08:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.