elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Accurate and Scalable Receiver-Level Flux Prediction: A Fully Data-Driven Solution

Kuhl, Mathias und Pargmann, Max und Maldonado Quinto, Daniel und Pitz-Paal, Robert (2025) Accurate and Scalable Receiver-Level Flux Prediction: A Fully Data-Driven Solution. Solar Energy (299), Seiten 113631-1. Elsevier. doi: 10.1016/j.solener.2025.113631. ISSN 0038-092X.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0038092X25003949

Kurzfassung

Concentrated Solar Technologies (CST) systems, particularly central tower configurations with heliostat fields, play a critical role in the renewable energy landscape. By focusing sunlight from thousands of heliostats onto a central receiver, these systems generate high-temperature heat, which serves as a key resource for dispatchable power generation and industrial processes. Accurate receiver-level flux prediction, which depends on precise heliostat characterization, is essential for optimizing efficiency and operational control. However, existing characterization methods face trade-offs between accuracy and scalability, limiting their practicality for large-scale deployment. To overcome these limitations, this study introduces a fully data-driven framework that unifies heliostat characterization and flux prediction, leveraging operational data from standard calibration procedures. Expanding upon previous work that employed StyleGAN for beam-characterization-based predictions, this approach advances the methodology to achieve accurate receiver-level flux predictions. While the prior method demonstrated a proof of concept for a unified data-driven approach, it remained constrained to flux predictions on the calibration target itself. This study introduces key innovations, including aim point generalization strategies and a novel receiver projection technique, effectively bridging the gap between beam-characterization-based heliostat characterization and accurate receiver-level flux predictions. The proposed Transformer-based architecture achieves receiver-level focal spot prediction errors below 12%, exceeding the accuracy of state-of-the-art deflectometry-enhanced ray tracing. By relying exclusively on standard calibration images, the method remains both cost-efficient and scalable, offering a practical solution for large-scale CST applications.

elib-URL des Eintrags:https://elib.dlr.de/217729/
Dokumentart:Zeitschriftenbeitrag
Titel:Accurate and Scalable Receiver-Level Flux Prediction: A Fully Data-Driven Solution
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kuhl, Mathiasmathias.kuhl (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pargmann, MaxMax.Pargmann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Maldonado Quinto, DanielDaniel.MaldonadoQuinto (at) dlr.dehttps://orcid.org/0000-0003-2929-8667195270138
Pitz-Paal, RobertRobert.Pitz-Paal (at) dlr.dehttps://orcid.org/0000-0002-3542-3391NICHT SPEZIFIZIERT
Datum:Oktober 2025
Erschienen in:Solar Energy
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.solener.2025.113631
Seitenbereich:Seiten 113631-1
Verlag:Elsevier
Name der Reihe:Elsevier Ltd
ISSN:0038-092X
Status:veröffentlicht
Stichwörter:Solar power towerFlux density predictionCamera-target methodHeliostatMachine learning
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Intelligenter Betrieb
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Solarforschung > Konzentrierende Solartechnologien
Hinterlegt von: Brockel, Linda
Hinterlegt am:27 Okt 2025 09:59
Letzte Änderung:27 Okt 2025 09:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.