Kuhl, Mathias und Pargmann, Max und Maldonado Quinto, Daniel und Pitz-Paal, Robert (2025) Accurate and Scalable Receiver-Level Flux Prediction: A Fully Data-Driven Solution. Solar Energy (299), Seiten 113631-1. Elsevier. doi: 10.1016/j.solener.2025.113631. ISSN 0038-092X.
|
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0038092X25003949
Kurzfassung
Concentrated Solar Technologies (CST) systems, particularly central tower configurations with heliostat fields, play a critical role in the renewable energy landscape. By focusing sunlight from thousands of heliostats onto a central receiver, these systems generate high-temperature heat, which serves as a key resource for dispatchable power generation and industrial processes. Accurate receiver-level flux prediction, which depends on precise heliostat characterization, is essential for optimizing efficiency and operational control. However, existing characterization methods face trade-offs between accuracy and scalability, limiting their practicality for large-scale deployment. To overcome these limitations, this study introduces a fully data-driven framework that unifies heliostat characterization and flux prediction, leveraging operational data from standard calibration procedures. Expanding upon previous work that employed StyleGAN for beam-characterization-based predictions, this approach advances the methodology to achieve accurate receiver-level flux predictions. While the prior method demonstrated a proof of concept for a unified data-driven approach, it remained constrained to flux predictions on the calibration target itself. This study introduces key innovations, including aim point generalization strategies and a novel receiver projection technique, effectively bridging the gap between beam-characterization-based heliostat characterization and accurate receiver-level flux predictions. The proposed Transformer-based architecture achieves receiver-level focal spot prediction errors below 12%, exceeding the accuracy of state-of-the-art deflectometry-enhanced ray tracing. By relying exclusively on standard calibration images, the method remains both cost-efficient and scalable, offering a practical solution for large-scale CST applications.
| elib-URL des Eintrags: | https://elib.dlr.de/217729/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
| Titel: | Accurate and Scalable Receiver-Level Flux Prediction: A Fully Data-Driven Solution | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Oktober 2025 | ||||||||||||||||||||
| Erschienen in: | Solar Energy | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| DOI: | 10.1016/j.solener.2025.113631 | ||||||||||||||||||||
| Seitenbereich: | Seiten 113631-1 | ||||||||||||||||||||
| Verlag: | Elsevier | ||||||||||||||||||||
| Name der Reihe: | Elsevier Ltd | ||||||||||||||||||||
| ISSN: | 0038-092X | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Solar power towerFlux density predictionCamera-target methodHeliostatMachine learning | ||||||||||||||||||||
| HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
| HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||
| HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||
| DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
| DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | E - Intelligenter Betrieb | ||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Solarforschung > Konzentrierende Solartechnologien | ||||||||||||||||||||
| Hinterlegt von: | Brockel, Linda | ||||||||||||||||||||
| Hinterlegt am: | 27 Okt 2025 09:59 | ||||||||||||||||||||
| Letzte Änderung: | 27 Okt 2025 09:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags