elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Trustworthy Physics-Informed AI for Aerospace

Rauthmann, Katharina und von der Lehr, Fabrice und Knechtges, Philipp (2025) Trustworthy Physics-Informed AI for Aerospace. DLRK 2025, 2025-09-23 - 2025-09-25, Augsburg, Deutschland.

[img] PDF
1MB

Kurzfassung

In situations where computing capacity is limited and real-time capability is crucial, as is often the case in DLR's engineering applications, traditional physical approaches are insufficient and surrogate models are needed. However, with data-driven neural networks natural laws like conservation of mass, energy and momentum are not or only poorly considered. They also lack information about uncertainties. In artificial intelligence systems these can occur, for example, in the model parameters, the input data or within the model itself. Neglecting uncertainties could lead to unreliable decisions. Therefore, a deep understanding of them is essential to assess the prediction quality, especially for applications with high safety requirements. The new DLR project TIARA aims to develop advanced artificial intelligence models that incorporate both uncertainty quantification techniques and physical principles. This approach ensures that the safety aspect is considered from the outset. Furthermore, these innovative models combine the precision of traditional physical approaches with the efficiency of AI-based surrogate models. Incorporating uncertainty quantification into AI models will ultimately significantly increase the safety and reliability of simulations and the decisions based on them. It is planned to use the developed AI models in edge computing and control engineering in order to obtain a high-performance and robust controller for controlling safety-critical, autonomous systems. In aerodynamic design, the new methods are intended to serve as fast and robust reduced-order models in aviation, which can then be used for optimization chains, for example, taking uncertainties into account.

elib-URL des Eintrags:https://elib.dlr.de/217693/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Trustworthy Physics-Informed AI for Aerospace
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rauthmann, Katharinakatharina.rauthmann (at) dlr.dehttps://orcid.org/0009-0002-9962-4819NICHT SPEZIFIZIERT
von der Lehr, FabriceFabrice.Lehr (at) dlr.dehttps://orcid.org/0009-0000-2134-6754NICHT SPEZIFIZIERT
Knechtges, PhilippPhilipp.Knechtges (at) dlr.dehttps://orcid.org/0000-0002-4849-0593NICHT SPEZIFIZIERT
Datum:23 September 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Artificial Intelligence, Machine Learning, Uncertainty Quantification, Reliability
Veranstaltungstitel:DLRK 2025
Veranstaltungsort:Augsburg, Deutschland
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:23 September 2025
Veranstaltungsende:25 September 2025
Veranstalter :DGLR
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt | TIARA | Trustworthy Physics-informed AI for Aerospace and Transportation
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Rauthmann, Katharina
Hinterlegt am:16 Okt 2025 08:34
Letzte Änderung:16 Okt 2025 08:34

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.