Litz, Julian und Leleux, Philippe und Kruse, Carola und Gedicke, Joscha und Kühn, Martin Joachim (2025) Memory- and compute-optimized geometric multigrid GMGPolar for curvilinear coordinate representations -- Applications to fusion plasma. Journal of Computational and Applied Mathematics. Elsevier. ISSN 0377-0427. (eingereichter Beitrag)
|
PDF
- Nur DLR-intern zugänglich bis April 2027
- Preprintversion (eingereichte Entwurfsversion)
3MB |
Kurzfassung
Tokamak fusion reactors are actively studied as a means of realizing energy production from plasma fusion. However, due to the substantial cost and time required to construct fusion reactors and run physical experiments, numerical experiments are indispensable for understanding plasma physics inside tokamaks, supporting the design and engineering phase, and optimizing future reactor designs. Geometric multigrid methods are optimal solvers for many problems that arise from the discretization of partial differential equations. It has been shown that the multigrid solver GMGPolar solves the 2D gyrokinetic Poisson equation in linear complexity and with only small memory requirements compared to other state-of-the-art solvers. In this paper, we present a completely refactored and object-oriented version of GMGPolar which offers two different matrix-free implementations. Among other things, we leverage the Sherman-Morrison formula to solve cyclic tridiagonal systems from circular line solvers without additional fill-in and we apply reordering to optimize cache access of circular and radial smoothing operations. With the Give approach, memory requirements are further reduced and speedups of four to seven are obtained for usual test cases. For the Take approach, speedups of 16 to 18 can be attained. In an additionally experimental setup of using GMGPolar as a preconditioner for conjugate gradients, this speedup could even be increased to factors between 25 and 37.
| elib-URL des Eintrags: | https://elib.dlr.de/217525/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Memory- and compute-optimized geometric multigrid GMGPolar for curvilinear coordinate representations -- Applications to fusion plasma | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||||||
| Erschienen in: | Journal of Computational and Applied Mathematics | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Verlag: | Elsevier | ||||||||||||||||||||||||
| ISSN: | 0377-0427 | ||||||||||||||||||||||||
| Status: | eingereichter Beitrag | ||||||||||||||||||||||||
| Stichwörter: | Multigrid, fusion plasma, parallel computing, high-performance computing, tokamak, GMGPolar | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Softwaretechnologie > High-Performance Computing Institut für Softwaretechnologie | ||||||||||||||||||||||||
| Hinterlegt von: | Kühn, Dr. Martin Joachim | ||||||||||||||||||||||||
| Hinterlegt am: | 03 Dez 2025 09:43 | ||||||||||||||||||||||||
| Letzte Änderung: | 03 Dez 2025 09:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags