Kapsreiter, Stefan (2025) Precipitation Nowcasting using Diffusion Models on Satellite-Derived Radar Fields. Masterarbeit, Hochschule Wismar.
|
PDF
- Nur DLR-intern zugänglich
9MB |
Kurzfassung
Accurate short-term precipitation prediction is essential for mitigating the hazardous impacts of severe weather events. Radar observations provide high-resolution mea�surements for convective activity, but their coverage is limited. Satellites can provide data in these uncovered areas, but do not contain inherent severity measures. This thesis investigates if generative diffusion models are able to bridge this gap by fore�casting radar reflectivity fields directly from multispectral satellite imagery. We construct a training dataset from 4 years of data with increased quantities of rain samples using importance sampling, keeping two seperate years meteorologically consistent for validation and testing. We propose a conditional denoising diffusion model with a convolutional UNet backbone and dedicated satellite encoder that fuses spatial, temporal and time-of-day information. We generate three consecutive radar fields given three preceding satellite images. Our model demonstrates realistic radar structures and competitive skill in standard verification metrics, especially when evaluating on ensemble forecasts.
| elib-URL des Eintrags: | https://elib.dlr.de/217449/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||||||
| Titel: | Precipitation Nowcasting using Diffusion Models on Satellite-Derived Radar Fields | ||||||||||||
| Autoren: |
| ||||||||||||
| DLR-Supervisor: |
| ||||||||||||
| Datum: | 2025 | ||||||||||||
| Open Access: | Nein | ||||||||||||
| Seitenanzahl: | 96 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Nowcasting, Satellite, Precipitation, Deep Learning, Diffusion Models | ||||||||||||
| Institution: | Hochschule Wismar | ||||||||||||
| Abteilung: | Faculty of Engineering | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||
| HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
| DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Klima, Wetter und Umwelt, R - Impulsprojekt | IN2ACTION | Nowcasting des Wetters zur Verbesserung der Betriebssicherheit [EO] | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Angewandte Meteorologie | ||||||||||||
| Hinterlegt von: | Metzl, Christoph | ||||||||||||
| Hinterlegt am: | 24 Okt 2025 09:27 | ||||||||||||
| Letzte Änderung: | 24 Okt 2025 09:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags