elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Gravity and Magnetic Field Signatures in Hydrothermally Affected Regions on Mars

Mittelholz, Anna und Moorkamp, Max und Broquet, Adrien und Ojha, Lujendra (2025) Gravity and Magnetic Field Signatures in Hydrothermally Affected Regions on Mars. Journal of Geophysical Research: Planets, 130 (4). Wiley. doi: 10.1029/2024JE008832. ISSN 2169-9097.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JE008832

Kurzfassung

Multiple lines of evidence indicate that liquid water-rock interactions occurred on ancient Mars, particularly within the crust, where hydrothermal systems have been hypothesized. Such hydrothermal circulation (HC) can significantly lower temperatures in the crust, thereby restricting the viscoelastic relaxation of impact craters. Craters with minimal relaxation are characterized by their large depth-to-diameter ratio and prominent Bouguer gravity anomalies. Additionally, HC can induce magnetic anomalies through chemical remanent magnetization (CRM). Consequently, if HC was widespread on Mars, the gravitational signatures of unrelaxed craters may correlate with their magnetic signatures. To investigate how HC influenced the magnetic characteristics of the Martian crust, we focus on the region surrounding several unrelaxed craters in the southern highlands, where hydrothermal activity was likely prevalent. We use a newly developed joint inversion approach and model magnetization and density in such regions to investigate how hydrothermal systems affect those parameters. The inversion approach makes use of a mutual information term in which models with a parameter relationship are favored, that is, models in which magnetization and density distributions are correlated. Despite showing large Bouguer gravity anomalies and forming over 3.75 billion years ago, when the Martian dynamo was most likely active, investigated craters and surrounding regions exhibit minimal magnetic anomalies. We propose that this lack of magnetic signatures is most likely due to demagnetization of the crust through CRM, induced by HC long after the Martian dynamo ceased. Our findings suggest that deep, long-lived hydrothermal systems—likely fueled by heat-producing elements—were present, potentially creating habitable conditions on early Mars.

elib-URL des Eintrags:https://elib.dlr.de/217346/
Dokumentart:Zeitschriftenbeitrag
Titel:Gravity and Magnetic Field Signatures in Hydrothermally Affected Regions on Mars
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mittelholz, AnnaETH Zurichhttps://orcid.org/0000-0002-5603-7334NICHT SPEZIFIZIERT
Moorkamp, MaxDepartment of Earth and Environmental Sciences, Ludwig Maximilian University of MunichNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Broquet, Adrienadrien.broquet (at) dlr.dehttps://orcid.org/0000-0002-5153-303X193724933
Ojha, LujendraDepartment of Earth and Planetary Sciences, Rutgers University, New York, NJ, USAhttps://orcid.org/0000-0003-2086-4546NICHT SPEZIFIZIERT
Datum:2025
Erschienen in:Journal of Geophysical Research: Planets
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:130
DOI:10.1029/2024JE008832
Verlag:Wiley
ISSN:2169-9097
Status:veröffentlicht
Stichwörter:Mars, Hydrothermal, Water, Gravity, Magnetic Field
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Planetary Evolution and Life, R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Broquet, Adrien
Hinterlegt am:08 Okt 2025 10:14
Letzte Änderung:13 Okt 2025 12:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.