elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Hyperspectral vs. multispectral data for tree species classification – first experiences with EnMAP data

Immitzer, Markus und Daryaei, Ardalan und Pinnel, Nicole (2025) Hyperspectral vs. multispectral data for tree species classification – first experiences with EnMAP data. 2.EnMAP User Workshop, 2025-04-02 - 2025-04-04, Schloss Nymphenburg, Munich, Germany.

[img] PDF
127kB

Offizielle URL: https://enmap.geographie-muenchen.de/

Kurzfassung

Tree species classification using Earth observation (EO) data is crucial for biodiversity conservation and it supports sustainable forest management. Overall, accurate classification helps maintain ecosystem health and resilience, ensuring forests' ecological, economic, and social benefits are preserved. Large-scale tree species maps are feasible only through the use of EO data, as they offer comprehensive, consistent, and repeatable coverage over extensive and often inaccessible regions. Furthermore, remote sensing technologies provide detailed spectral information crucial for distinguishing between different species across large landscapes, making them indispensable for accurate and efficient mapping. However, different tree species often have similar spectral signatures, making it difficult to distinguish between them. This is especially true for species that have similar leaf structures and pigments. Next to the spectral information also the spatial resolution and the temporal availability are crucial. Optimal EO data would be fine enough to capture individual trees or small groups of trees and would have a high revisit rate to detect changes in the spectral properties over time due to seasonal variations, phenological stages, and environmental stressors. However, tree species can be even more robustly identified if we classify/identify them in the biophysical feature space and not in the spectral-temporal feature space.

elib-URL des Eintrags:https://elib.dlr.de/217235/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Hyperspectral vs. multispectral data for tree species classification – first experiences with EnMAP data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Immitzer, MarkusBoKu WienNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Daryaei, ArdalanBoKu WienNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pinnel, NicoleNicole.Pinnel (at) dlr.dehttps://orcid.org/0000-0003-1978-3204NICHT SPEZIFIZIERT
Datum:April 2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:TREE SPECIES CLASSIFICATION, MULTISPECTRAL, SENTINEL-2, ENMAP
Veranstaltungstitel:2.EnMAP User Workshop
Veranstaltungsort:Schloss Nymphenburg, Munich, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:2 April 2025
Veranstaltungsende:4 April 2025
Veranstalter :Ludwig-Maximilians University of Munich (LMU) and Geoforschungszentrum Potsdam (GFZ)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt EnMAP Phase E, R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Internationales Bodensegment
Hinterlegt von: Pinnel, Dr.rer.nat Nicole
Hinterlegt am:07 Okt 2025 12:05
Letzte Änderung:07 Okt 2025 12:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.