elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Lamb wave based ice sensing by neuronal network analysis of icing wind tunnel data

Pohl, Martin und Rose, Michael (2025) Lamb wave based ice sensing by neuronal network analysis of icing wind tunnel data. The American Society of Mechanical Engineers. ASME's Premier Conference on Smart Materials, Adaptive Structures, and Intelligent Systems, 2025-09-08 - 2025-09-11, St. Louis.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Detecting an ice accretion in aviation is still a challenge today since heavy icing can cause catastrophic failure of aircraft. Ice sensors, which are able to detect icing conditions or the presence of ice on aircraft, provide the necessary information to either activate ice protection systems or to avoid the icing conditions. Within the last years, an ice sensor based on lamb waves has been developed where a lamb wave signal is sent through an icing prone structure. Ice accretion influences the lamb wave transmission, which is used to detect the presence of ice. This detection of the presence of ice has been successfully demonstrated in icing wind tunnel as well as in flight tests. Since icing itself and especially the interaction of ice, the base structure and the ice accretion is a very complex phenomenon, the current understanding of the lamb wave signal does not allow to obtain a precise measure for the ice thickness on the structure. However, this is very desirable information from a pilot perspective, since it allows to calculate the ice accretion rate and the liquid water content of the atmosphere. This in the end is required to assess the severity of the icing encounter, which is the basis to decide the countermeasures that have to be taken to ensure the safety of flight. In order to increase the precision of the ice thickness obtained by the lamb wave signal, an extensive icing wind tunnel test campaign was conducted to provide a solid set of data in different icing conditions. This dataset is used to train neuronal networks with the ice thickness as target function. The paper will provide an overview about the icing wind tunnel testing, the topology of the neuronal networks and the training. Finally some modeling and test results of the trained neuronal networks will be presented.

elib-URL des Eintrags:https://elib.dlr.de/217150/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Lamb wave based ice sensing by neuronal network analysis of icing wind tunnel data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Pohl, MartinMartin.Pohl (at) dlr.dehttps://orcid.org/0000-0002-1825-8419NICHT SPEZIFIZIERT
Rose, MichaelMichael.Rose (at) dlr.dehttps://orcid.org/0000-0002-8311-3638NICHT SPEZIFIZIERT
Datum:September 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Verlag:The American Society of Mechanical Engineers
Status:veröffentlicht
Stichwörter:lamb wave, ice sensor, neuronal network, ultrasound, piezo
Veranstaltungstitel:ASME's Premier Conference on Smart Materials, Adaptive Structures, and Intelligent Systems
Veranstaltungsort:St. Louis
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 September 2025
Veranstaltungsende:11 September 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Komponenten und Systeme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CS - Komponenten und Systeme
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugzeugsysteme
Standort: Braunschweig
Institute & Einrichtungen:Institut für Systemleichtbau > Adaptronik
Hinterlegt von: Pohl, Martin
Hinterlegt am:06 Okt 2025 08:12
Letzte Änderung:06 Okt 2025 08:12

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.