elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Monocular Underwater Vision Pipeline for 6DoF Annotations with Inpainting-Based Image Augmentation

Klein, Alexander und Brandt, David und Stoppe, Jannis (2025) Monocular Underwater Vision Pipeline for 6DoF Annotations with Inpainting-Based Image Augmentation. In: Proceedings Volume 13606, Applications of Machine Learning 2025, 136060Q. Optics + Photonics 2025, 2025-08-03 - 2025-08-07, San Diego, USA. doi: 10.1117/12.3063565.

[img] PDF
6MB

Offizielle URL: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13606/3063565/Monocular-underwater-vision-pipeline-for-6DoF-annotations-with-inpainting-based/10.1117/12.3063565.full

Kurzfassung

The acquisition of high-fidelity, annotated data for training perception and manipulation tasks poses significant challenges. This process typically demands customized setups, tightly controlled environments, and specialized sensing equipment that are unavailable in underwater settings. Marker-based methods offer a simpler alternative by tracking the six degrees of freedom poses of objects using a monocular camera. However, attaching markers to objects alters their original form and appearance, while placing markers in the environment modifies the backdrop and limits the flexibility and portability of such methods. In this work, we present a pipeline capturing underwater scenes using a pose plate with fixated featureless objects of varying scales. The pose plate is equipped with ArUco markers, which track the 6D camera pose and enable the pipeline to render pixel-wise depth and object masks. Custom camera mappings ensure precise alignment between rendered masks and sensor images. To prevent machine learning models from relying on the markers as cues rather than building robust object representations, our pipeline employs object aware inpainting as augmentation method, replacing the pose plate with a realistic background. The pipeline was validated by training semantic segmentation models on a custom dataset consisting of scenes in different underwater environments. Our experiments demonstrate that incorporating augmented data into the training process yields improved model performance, outperforming models trained solely on images with visible markers. This finding suggests that our proposed techniques have the potential to mitigate the domain gap between marker-based ground truth and real-world data.

elib-URL des Eintrags:https://elib.dlr.de/217120/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Monocular Underwater Vision Pipeline for 6DoF Annotations with Inpainting-Based Image Augmentation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Klein, Alexanderalexander.klein (at) dlr.dehttps://orcid.org/0009-0004-2403-0455194299535
Brandt, DavidDavid.Brandt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Stoppe, Jannisjannis.stoppe (at) dlr.dehttps://orcid.org/0000-0003-2952-3422NICHT SPEZIFIZIERT
Datum:16 September 2025
Erschienen in:Proceedings Volume 13606, Applications of Machine Learning 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1117/12.3063565
Seitenbereich:136060Q
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Zelinski, MichaelLawrence Livermore National Lab, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taha, TarekUniversity of Dayton, Dayton, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Narayanan, BarathUniversity of Dayton, Dayton, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Awwal, AbdulLawrence Livermore National Lab, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Iftekharuddin, KhanOld Dominion University, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Status:veröffentlicht
Stichwörter:Underwater Perception, 6D Object Pose, Image Augmentation, Semantic Segmentation, Computer Vision, Underwater Dataset
Veranstaltungstitel:Optics + Photonics 2025
Veranstaltungsort:San Diego, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:3 August 2025
Veranstaltungsende:7 August 2025
Veranstalter :SPIE
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Bremerhaven
Institute & Einrichtungen:Institut für den Schutz maritimer Infrastrukturen > Maritime Sicherheitstechnologien
Hinterlegt von: Klein, Alexander
Hinterlegt am:15 Okt 2025 14:08
Letzte Änderung:15 Okt 2025 14:08

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.