Roth, Manuel M. H. und Jerkovits, Thomas und Hegde, Anupama Ramesh und Delamotte, Thomas und Knopp, Andreas (2025) Deep Reinforcement Learning for Adaptive Traffic Engineering in Satellite Constellation Networks. In: 12th Advanced Satellite Multimedia Systems Conference and the 18th Signal Processing for Space Communications Workshop, ASMS/SPSC 2025, Seiten 1-8. IEEE Xplore. 2025 12th Advanced Satellite Multimedia Systems Conference and the 18th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2025-02-26 - 2025-02-28, Sitges, Spanien. doi: 10.1109/ASMS/SPSC64465.2025.10946057. ISBN 979-833152235-3. ISSN 2326-5949.
|
PDF
786kB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10946057
Kurzfassung
With increasing demand for broadband services provided by satellite constellation networks, routing and traffic management have become increasingly relevant topics. To enable global coverage and end-to-end connectivity, these systems rely on inter-satellite links to span space-borne networks. To fulfill the quality of service requirements of significant network loads, the traffic load needs to be balanced optimally. As rule-based techniques to solve the underlying multi-commodity flow problem are too complex to comply with on-board processing power limitations, specifically tailored light-weight solutions are required. To this end, we propose an adaptive traffic engineering approach based on deep reinforcement learning. We explore a policy-based approach for a flexible flow allocation between candidate paths. We compare the schemes with state-of-the-art benchmarks based on heuristics, and an optimal benchmark using linear programming. The results highlight that the proposed scheme is able to approximate optimal solutions to the multi-commodity flow problem and can learn suitable policies for diverse sets of paths. Moreover, after training, the approach exhibits low complexity in inference, and is thus well-suited to be included in the controller logic of in-space distributed software defined networks.
| elib-URL des Eintrags: | https://elib.dlr.de/217058/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Deep Reinforcement Learning for Adaptive Traffic Engineering in Satellite Constellation Networks | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 1 April 2025 | ||||||||||||||||||||||||
| Erschienen in: | 12th Advanced Satellite Multimedia Systems Conference and the 18th Signal Processing for Space Communications Workshop, ASMS/SPSC 2025 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| DOI: | 10.1109/ASMS/SPSC64465.2025.10946057 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-8 | ||||||||||||||||||||||||
| Verlag: | IEEE Xplore | ||||||||||||||||||||||||
| ISSN: | 2326-5949 | ||||||||||||||||||||||||
| ISBN: | 979-833152235-3 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | routing, traffic engineering, deep reinforcement learning, satellite networks | ||||||||||||||||||||||||
| Veranstaltungstitel: | 2025 12th Advanced Satellite Multimedia Systems Conference and the 18th Signal Processing for Space Communications Workshop (ASMS/SPSC) | ||||||||||||||||||||||||
| Veranstaltungsort: | Sitges, Spanien | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 26 Februar 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 28 Februar 2025 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Global Connectivity for People and Machines | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Satellitennetze | ||||||||||||||||||||||||
| Hinterlegt von: | Roth, Manuel | ||||||||||||||||||||||||
| Hinterlegt am: | 02 Okt 2025 13:21 | ||||||||||||||||||||||||
| Letzte Änderung: | 02 Okt 2025 13:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags