elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Reinforcement Learning for Adaptive Traffic Engineering in Satellite Constellation Networks

Roth, Manuel M. H. und Jerkovits, Thomas und Hegde, Anupama Ramesh und Delamotte, Thomas und Knopp, Andreas (2025) Deep Reinforcement Learning for Adaptive Traffic Engineering in Satellite Constellation Networks. In: 12th Advanced Satellite Multimedia Systems Conference and the 18th Signal Processing for Space Communications Workshop, ASMS/SPSC 2025, Seiten 1-8. IEEE Xplore. 2025 12th Advanced Satellite Multimedia Systems Conference and the 18th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2025-02-26 - 2025-02-28, Sitges, Spanien. doi: 10.1109/ASMS/SPSC64465.2025.10946057. ISBN 979-833152235-3. ISSN 2326-5949.

[img] PDF
786kB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10946057

Kurzfassung

With increasing demand for broadband services provided by satellite constellation networks, routing and traffic management have become increasingly relevant topics. To enable global coverage and end-to-end connectivity, these systems rely on inter-satellite links to span space-borne networks. To fulfill the quality of service requirements of significant network loads, the traffic load needs to be balanced optimally. As rule-based techniques to solve the underlying multi-commodity flow problem are too complex to comply with on-board processing power limitations, specifically tailored light-weight solutions are required. To this end, we propose an adaptive traffic engineering approach based on deep reinforcement learning. We explore a policy-based approach for a flexible flow allocation between candidate paths. We compare the schemes with state-of-the-art benchmarks based on heuristics, and an optimal benchmark using linear programming. The results highlight that the proposed scheme is able to approximate optimal solutions to the multi-commodity flow problem and can learn suitable policies for diverse sets of paths. Moreover, after training, the approach exhibits low complexity in inference, and is thus well-suited to be included in the controller logic of in-space distributed software defined networks.

elib-URL des Eintrags:https://elib.dlr.de/217058/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Deep Reinforcement Learning for Adaptive Traffic Engineering in Satellite Constellation Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Roth, Manuel M. H.manuel.roth (at) dlr.dehttps://orcid.org/0000-0001-7878-1204NICHT SPEZIFIZIERT
Jerkovits, ThomasThomas.Jerkovits (at) dlr.dehttps://orcid.org/0000-0002-7538-7639184399317
Hegde, Anupama Rameshanupama.hegde (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Delamotte, ThomasUniversität der Bundeswehr MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Knopp, AndreasUniversität der Bundeswehr MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:1 April 2025
Erschienen in:12th Advanced Satellite Multimedia Systems Conference and the 18th Signal Processing for Space Communications Workshop, ASMS/SPSC 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/ASMS/SPSC64465.2025.10946057
Seitenbereich:Seiten 1-8
Verlag:IEEE Xplore
ISSN:2326-5949
ISBN:979-833152235-3
Status:veröffentlicht
Stichwörter:routing, traffic engineering, deep reinforcement learning, satellite networks
Veranstaltungstitel:2025 12th Advanced Satellite Multimedia Systems Conference and the 18th Signal Processing for Space Communications Workshop (ASMS/SPSC)
Veranstaltungsort:Sitges, Spanien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:26 Februar 2025
Veranstaltungsende:28 Februar 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Global Connectivity for People and Machines
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Satellitennetze
Hinterlegt von: Roth, Manuel
Hinterlegt am:02 Okt 2025 13:21
Letzte Änderung:02 Okt 2025 13:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.