elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

A Generative Adversarial Networks (GANs)-based data augmentation in the context of material testing and predicting strain rate effect

Yoo, Sanghyun und Viswakumar, Amal Jyothis und Vinot, Mathieu und Toso, Nathalie und Voggenreiter, Heinz (2025) A Generative Adversarial Networks (GANs)-based data augmentation in the context of material testing and predicting strain rate effect. The 18th European Congress and Exhibition on Advanced Materials and Processes – FEMS EUROMAT 2025, 2025-09-14 - 2025-09-18, Granada, Spain.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The aerospace industry is showing increasing interest to accelerate the certification process of composite aero-structure using machine learning (ML) models since certification often requires extensive testing to validate the safety and reliability. For example, the number of experimental tests, especially at the coupon level, can be reduced using ML models by identifying patterns and relationships while still ensuring the necessary levels of reliability in material characterisation. However, a large amount of data is essential to train ML models for learning the patterns to correctly predict the target values. The acquisition of training data, more particularly for the identification of strain-rate effects in composite materials, solely through material testing is often difficult due to high costs and time constraints, which often result in data scarcity. The lack of data presents considerable challenges when training ML models, as it can lead to overfitting and poor generalisation. This study reports the development of a data augmentation technique with a generative model Generative Adversarial Networks (GANs) as one of the potential solutions to alleviate the issues of data scarcity. Firstly, the capabilities of the GANs model are investigated for the generation of synthetic material test data, which should capture realistic physical phenomena. Secondly, the quality of the generated data and its similarity to available experimental datasets are evaluated. Evaluation metrics based on Principle Component Analysis (PCA) are developed to determine the acceptability of the generated synthetic data. Finally, the strain-rate effects on carbon/epoxy composites are exemplarily predicted using a Gaussian Process Regression (GPR). Furthermore, the management of a high number of heterogeneous datasets raises additional challenges to guarantee FAIR principles. In this work, experimental and synthetic data are parsed and converted into structured JSON data and labelled using an internal ontology. The storage in the research data management system of DLR, Shepard, allows to increase data findability and interoperability. The predicted results indicate that GPR can accurately forecast the in-plane shear strength of carbon/epoxy composites across various strain rates. This accuracy is achieved using a training dataset generated through a developed data augmentation technique. This framework supports a data-driven approach for creating synthetic data and establishes its acceptance criteria while also facilitating the prediction of the mechanical properties of carbon/epoxy composites.

elib-URL des Eintrags:https://elib.dlr.de/216903/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A Generative Adversarial Networks (GANs)-based data augmentation in the context of material testing and predicting strain rate effect
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Yoo, SanghyunSanghyun.Yoo (at) dlr.dehttps://orcid.org/0000-0001-6924-1716NICHT SPEZIFIZIERT
Viswakumar, Amal Jyothisamal.viswakumar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Vinot, MathieuMathieu.Vinot (at) dlr.dehttps://orcid.org/0000-0003-3394-5142NICHT SPEZIFIZIERT
Toso, NathalieNathalie.Toso (at) dlr.dehttps://orcid.org/0000-0003-2803-1450NICHT SPEZIFIZIERT
Voggenreiter, HeinzHeinz.Voggenreiter (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Data augmentation, Generative Adversarial Networks (GANs), Gaussian Process Regression (GPR), Strain-rate effect, Carbon fibre composites
Veranstaltungstitel:The 18th European Congress and Exhibition on Advanced Materials and Processes – FEMS EUROMAT 2025
Veranstaltungsort:Granada, Spain
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 September 2025
Veranstaltungsende:18 September 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Komponenten und Systeme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CS - Komponenten und Systeme
DLR - Teilgebiet (Projekt, Vorhaben):L - Strukturwerkstoffe und Bauweisen
Standort: Aachen-Merzbrück
Institute & Einrichtungen:Institut für Bauweisen und Strukturtechnologie > Strukturelle Integrität
Hinterlegt von: Yoo, Sanghyun
Hinterlegt am:07 Okt 2025 12:19
Letzte Änderung:07 Okt 2025 12:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.