elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

A Data-driven Approach to predict Strain Rate Effect of Carbon/epoxy Composites incorporating Constitutive Artificial Neural Networks (CANNs)

Yoo, Sanghyun und Aslamsha, Ijaz Ahamed und Bhattacharya, Dipankul und Kowalski, Julia und Toso, Nathalie und Voggenreiter, Heinz (2025) A Data-driven Approach to predict Strain Rate Effect of Carbon/epoxy Composites incorporating Constitutive Artificial Neural Networks (CANNs). The 10th ECCOMAS Thematic Conference on the Mechanical Response of Composites, 2025-09-09 - 2025-09-11, Vienna, Austria.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The design of polymer composite structures for crashworthiness is significantly affected by strain-rate effects, through which mechanical properties vary as a function of the local loading rate of the material. This is especially crucial when considering crash or impact loaded structures, particularly in the range of intermediate strain rates. In recent years, the application of a data-driven approach has increased to predict the mechanical properties of fibre reinforced plastics (FRP) using machine learning models [1]. The dataset size and quality are crucial for a data-driven approach to accurately analyse and predict material behaviours. However, the acquisition of such data through physical experiments alone is often constrained by several factors, such as cost and time. To address these challenges, we propose developing a novel data augmentation framework that combines Constitutive Artificial Neural Networks (CANNs) [2] to find the constitutive law of strain-rate effects automatically with transfer learning. This framework will serve two essential components. First, it will generate synthetic data that complements existing experimental results on the dynamic compressive behaviour of carbon/epoxy composites. This approach will incorporate constitutive material models into neural networks to ensure the meaningful prediction of strength properties. Second, the framework will bridge gaps in experimental datasets by learning underlying patterns from available test data. By developing a base model for well-characterised carbon/epoxy composites and implementing transfer learning techniques, we can efficiently extend a compressive strength prediction to new composite materials with limited test data. The developed approach will enhance the predictability of strain-rate effects in FRP by integrating generative modelling for data augmentation and applying transfer learning. By systematically expanding the dataset and leveraging existing models, we can improve the accuracy of strain rate predictions for new composite materials.

elib-URL des Eintrags:https://elib.dlr.de/216899/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A Data-driven Approach to predict Strain Rate Effect of Carbon/epoxy Composites incorporating Constitutive Artificial Neural Networks (CANNs)
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Yoo, SanghyunSanghyun.Yoo (at) dlr.dehttps://orcid.org/0000-0001-6924-1716NICHT SPEZIFIZIERT
Aslamsha, Ijaz Ahamedijaz.aslamsha (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bhattacharya, Dipankulbhattacharya (at) mbd.rwth-aachen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kowalski, Juliakowalski (at) mbd.rwth-aachen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Toso, NathalieNathalie.Toso (at) dlr.dehttps://orcid.org/0000-0003-2803-1450NICHT SPEZIFIZIERT
Voggenreiter, HeinzHeinz.Voggenreiter (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Constitutive Artificial Neural Networks, Carbon-epoxy, Machine learning, Strain rate effects, Strength
Veranstaltungstitel:The 10th ECCOMAS Thematic Conference on the Mechanical Response of Composites
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 September 2025
Veranstaltungsende:11 September 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Komponenten und Systeme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CS - Komponenten und Systeme
DLR - Teilgebiet (Projekt, Vorhaben):L - Strukturwerkstoffe und Bauweisen
Standort: Aachen-Merzbrück
Institute & Einrichtungen:Institut für Bauweisen und Strukturtechnologie > Strukturelle Integrität
Hinterlegt von: Yoo, Sanghyun
Hinterlegt am:07 Okt 2025 12:17
Letzte Änderung:07 Okt 2025 12:17

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.