elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Vital nodes identification in temporal networks

Jolif, Martin (2025) Vital nodes identification in temporal networks. Masterarbeit, Ecole Normale Supérieure Paris-Saclay.

[img] PDF
14MB

Kurzfassung

Temporal networks offer a powerful way to represent the dynamic behavior of many real-world systems, ranging from social interactions to communication infrastructures. Identifying vital nodes in these networks is important for a variety of applications, such as controlling epidemics, targeting marketing campaigns, or preventing cascading failures in power grids. Although many methods have been developed to find influential nodes in static networks, extending them to temporal networks remains challenging. This difficulty becomes even more pronounced when privacy restrictions limit the amount of available data. This thesis explores Graph Neural Network (GNN)-based approaches for vital node identification (VNI) in temporal networks. I propose a method that learns temporal node embeddings from a sequence of networks and then aggregates these embeddings using an attention mechanism over time steps. This design allows the model to highlight the most relevant moments for node influence, rather than treating all time steps equally. Finally, the model predicts a vitality score for each node based on its aggregated embedding. Experiments on several real-world datasets show that the proposed method can outperform a baseline approach in specific settings, highlighting the potential of GNNs for temporal node analysis. However, the results also reveal some important limitations. Indeed, the proposed approach depends on Suspected-Infected-Recovered (SIR) based simulations to generate ground-truth vitality scores, which are computationally demanding and sensitive to parameter choices. Additionally, the model’s performance strongly relies on hyperparameter tuning and the characteristics of the dataset used for training and evaluation.

elib-URL des Eintrags:https://elib.dlr.de/216818/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Vital nodes identification in temporal networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jolif, Martinmartinjolif (at) gmail.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorDiallo, Diaoulédiaoule.diallo (at) dlr.dehttps://orcid.org/0000-0001-9226-0050
Thesis advisorHecking, TobiasTobias.Hecking (at) dlr.dehttps://orcid.org/0000-0003-0833-7989
Datum:September 2025
Open Access:Ja
Seitenanzahl:49
Status:veröffentlicht
Stichwörter:Complex networks, temporal networks, vital node identification, machine learning, graph neural networks
Institution:Ecole Normale Supérieure Paris-Saclay
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt Graduiertenschule Pandemic Threats
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > Intelligente und verteilte Systeme
Institut für Softwaretechnologie
Hinterlegt von: Diallo, Diaoulé
Hinterlegt am:06 Okt 2025 08:41
Letzte Änderung:06 Okt 2025 08:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.