elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Shock Oscillation, Loss Mechanisms and Flow Control: Recent Progress in Transonic Compressor Blade Aerodynamics

Hergt, Alexander (2025) Shock Oscillation, Loss Mechanisms and Flow Control: Recent Progress in Transonic Compressor Blade Aerodynamics. In: International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (ISAIF). International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (ISAIF), 2025-09-15 - 2025-09-19, Prag.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Over the past ten years, the Institute of Propulsion Technology at the German Aerospace Center (DLR) has made significant contributions to our understanding of the mechanisms of aerodynamic loss and unsteadiness in transonic fan and compressor blades, and of how these mechanisms can be influenced. These contributions include both unique time- and space-resolved measurements in the Transonic Cascade Wind Tunnel (TGK) and unsteady numerical simulations capturing key flow phenomena. This keynote presents an integrated overview of the most relevant findings. The flow in transonic fan and compressor sections is strongly influenced by unsteady shock–boundary layer interaction (SBLI), which causes dynamic flow separation and significant losses. Time-resolved particle image velocimetry (PIV) and high-speed Schlieren imaging reveal that shock oscillations can reach 10% of the chord. Meanwhile, spectral analyses indicate aerodynamic instabilities and blade vibrations resulting from these instabilities, which are beyond the scope of steady RANS simulations. This shock buffeting also represents a particular design challenge. In the worst case, it can lead to structural failure. These effects have been mitigated by passive flow control methods and targeted aerodynamic redesigns, such as suction-side pre-compression, which have been shown to reduce shock losses without compromising operating range. Optimization confirms measurable efficiency gains. Nevertheless, a persistent discrepancy remains between RANS simulations and experiments. Accurately capturing unsteady phenomena requires high-fidelity methods (URANS and LES), which are currently too costly for routine design purposes. Integrating these insights into efficient design tools is a key future challenge.

elib-URL des Eintrags:https://elib.dlr.de/216772/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Shock Oscillation, Loss Mechanisms and Flow Control: Recent Progress in Transonic Compressor Blade Aerodynamics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hergt, AlexanderAlexander.Hergt (at) dlr.dehttps://orcid.org/0009-0008-1643-7326199774983
Datum:15 September 2025
Erschienen in:International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (ISAIF)
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:shock boundary layer interaction transonic compressor flow control
Veranstaltungstitel:International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (ISAIF)
Veranstaltungsort:Prag
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 September 2025
Veranstaltungsende:19 September 2025
Veranstalter :Institute of Thermomechanics, Czech Academy of Sciences
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Triebwerkskonzepte und -integration
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Fan- und Verdichter
Hinterlegt von: Hergt, Dr.-Ing. Alexander
Hinterlegt am:15 Dez 2025 14:49
Letzte Änderung:15 Dez 2025 14:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.