elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Integrating Heterogeneous Geospatial Data Sources: Semantic Enrichment of Building Functions via Geometric Matching

Fröhlich, Nicolas (2025) Integrating Heterogeneous Geospatial Data Sources: Semantic Enrichment of Building Functions via Geometric Matching. Masterarbeit, Universität Konstanz.

[img] PDF
10MB

Kurzfassung

This thesis develops and implements a transparent, rule-based pipeline to enrich remotely sensed building footprints with semantic use types. Using CNN-derived building complex footprints as the target geometry and OpenStreetMap (OSM) buildings, cadastral buildings, and OSM land-use polygons as sources, we follow a union-and-resolve strategy: all intersecting candidate labels are retained and deterministically resolved into a proportion vector over four classes (residential, work, shopping, other). This design explicitly represents mixed-use rather than forcing a single label. Applied to Berlin, the combined sources substantially increase labeling coverage compared to any single source. A considerable share of buildings is multi-class (mixture rate at E =0.05: 8.22%), and the spatial pattern of normalized entropy shows expected centers of mixed use. External validity checks support plausibility: area weighted residential share correlates with census population density (Spearman r=0.52), and zones designated as mixed use exhibit distinctly higher mixture rates than single-use zones. A case study uses the pipeline to enrich building footprints with tenure proxies and links them to block-level migrant shares in a multilevel model. We find that houseownership patterns are dominated by centrality and built form, with a modest positive association with migrant share. We provide a well-documented, reproducible Python implementation. Limitations include sensitivity to small geometric overlaps and city-specific thresholds. The resulting dataset supports applications in infrastructure planning, exposure modeling, and urban policy.

elib-URL des Eintrags:https://elib.dlr.de/216726/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Integrating Heterogeneous Geospatial Data Sources: Semantic Enrichment of Building Functions via Geometric Matching
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fröhlich, NicolasNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorHertrich, Moritz Remymoritz.hertrich (at) dlr.dehttps://orcid.org/0009-0004-4468-7382
Thesis advisorStiller, DorotheeDorothee.Stiller (at) dlr.dehttps://orcid.org/0000-0002-8681-6144
Datum:September 2025
Open Access:Ja
Seitenanzahl:63
Status:veröffentlicht
Stichwörter:Semantic Enrichment, Building Function Classification, Geometric Matching, Volunteered Geographic Information (VGI), OpenStreetMap, Cadaster
Institution:Universität Konstanz
Abteilung:Department of Politics and Public Administration
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - MoDa - Models and Data for Future Mobility_Supporting Services
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Hertrich, Moritz Remy
Hinterlegt am:23 Sep 2025 10:02
Letzte Änderung:23 Sep 2025 10:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.