elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Coastal Urban Flood Detection and Analysis Using SAR and CNN-Based Methods: A Case Study for Central Vietnam

Schmid, Elly (2025) Coastal Urban Flood Detection and Analysis Using SAR and CNN-Based Methods: A Case Study for Central Vietnam. Masterarbeit, Julius-Maximilians-Universität Würzburg.

[img] PDF - Nur DLR-intern zugänglich
11MB

Kurzfassung

With over half of the world's population residing in cities and many located in vulnerable coastal zones, urban flooding has become an increasingly pressing issue, especially in rapidly urbanizing regions. As sea level rises and extreme weather events intensify with climate change, the need for a timely, costeffective flood detection is critical, particularly in areas with limited access to high-resolution satellite data or in-situ data. Despite this urgency, flood mapping in lower-income coastal urban areas remains significantly underrepresented in current satellite-based flood products. Vietnam, despite its high flood exposure, is rarely used as a study area in this context. This work assessed the applicability of a semiautomatic hierarchical-split-based approach (HSBA) for generating flood labels and the performance of five deep learning architectures with different sets of Input-Data for mapping flood extents trained on Sentinel-1 SAR data. The HSBA method proved effective in capturing urban and non-urban flood extents, though label accuracy was sometimes limited by the spatial resolution of SAR data and complex backscatter behavior in certain land cover types. Among the tested models, U-Nets consistently outperformed others, especially when combining multiple SAR bands with an urban probability mask, achieving high accuracy in the Vietnam test-case However, generalization to a different geographic region revealed challenges in transferability, underscoring the need for more diverse training datasets and improved label quality. The findings demonstrate the potential of combining semi-automatic label generation with deep learning for flood mapping in data-scarce coastal urban areas and outline future directions for enhancing accuracy, efficiency, and robustness of such models.

elib-URL des Eintrags:https://elib.dlr.de/216510/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Coastal Urban Flood Detection and Analysis Using SAR and CNN-Based Methods: A Case Study for Central Vietnam
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schmid, EllyUniversität WürzburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorKuenzer, Claudiaclaudia.kuenzer (at) dlr.deNICHT SPEZIFIZIERT
Thesis advisorBachofer, FelixFelix.Bachofer (at) dlr.dehttps://orcid.org/0000-0001-6181-0187
Datum:22 Juni 2025
Open Access:Nein
Seitenanzahl:91
Status:veröffentlicht
Stichwörter:flood mapping, urban, hierarchical-split-based approach
Institution:Julius-Maximilians-Universität Würzburg
Abteilung:Institute of Geography and Geology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Bachofer, Dr. Felix
Hinterlegt am:23 Sep 2025 09:51
Letzte Änderung:23 Sep 2025 09:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.