elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Uncertainty Estimation in the Aerodynamic Database for the Reusable Flight Experiment

Bhatti, Roben und Krummen, Sven (2025) Uncertainty Estimation in the Aerodynamic Database for the Reusable Flight Experiment. Masterarbeit, Università Degli Studi Di Padova.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

The following thesis investigates the application of Bayesian inference for modeling aerodynamic uncertainties in the context of RLV. The analysis is based on the ReFEx, which AEDB is composed of aerodynamic force and moment coefficients, gathered from various CFD simulations and wind tunnel experiments, across a wide range of flight conditions and vehicle configurations. The primary objective is to develop Bayesian models capable of capturing uncertainty and providing reliable predictions for unobserved flight regimes. For this purpose two classes of GP models are explored: standard GPs, which offer high fidelity at the cost of computational scalability, and sparse GPs, which approximate the full posterior distribution while being more computationally efficient for large datasets. Model performance is assessed using metrics such as the RMSE across multiple training and prediction schemes. In particular, sparse GP models are compared to full GPs by measuring the similarity of their posterior distributions using distance metrics such as Wasserstein and Energy distances. The results suggest that sparse GP models can effectively learn aerodynamic behavior and quantify predictive uncertainty, supporting fast, data-driven aerodynamic modeling for early-stage RLV design and the development of their GNC systems.

elib-URL des Eintrags:https://elib.dlr.de/216317/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Uncertainty Estimation in the Aerodynamic Database for the Reusable Flight Experiment
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bhatti, Robenroben.bhatti (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krummen, Svensven.krummen (at) dlr.dehttps://orcid.org/0000-0002-4126-688XNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorKrummen, Svensven.krummen (at) dlr.dehttps://orcid.org/0000-0002-4126-688X
Datum:2025
Open Access:Nein
Seitenanzahl:65
Status:veröffentlicht
Stichwörter:ReFEx RLV Aerodynamic Database Uncertainty Estimation Bayesian Inference Gaussian Process
Institution:Università Degli Studi Di Padova
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt ReFEx - Reusability Flight Experiment
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Systementwicklung und Projektbüro
Hinterlegt von: Krummen, Sven
Hinterlegt am:05 Sep 2025 10:48
Letzte Änderung:05 Sep 2025 10:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.