Bonifacius, Lucas und Hoppe, Fabian und Meinlschmidt, Hannes und Neitzel, Ira (2025) Optimal control of quasilinear parabolic PDEs with gradient terms and pointwise constraints on the gradient of the state. Mathematical Control and Related Fields. American Institute of Mathematical Sciences. doi: 10.3934/mcrf.2025037. ISSN 2156-8472.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.aimsciences.org/article/doi/10.3934/mcrf.2025037
Kurzfassung
We derived existence results and first order necessary optimality conditions for optimal control problems governed by quasi-linear parabolic partial differential equations (PDEs) with a class of first order nonlinearities that included, for instance, quadratic gradient terms. Pointwise in space and time or averaged in space and pointwise in time constraints on the gradient of the state controlled the growth of the nonlinear terms. We relied on and extended the improved regularity analysis for quasilinear parabolic PDEs on a whole scale of function spaces from [29]. In case of integral in space gradient-constraints, we derived first-order optimality conditions under rather general regularity assumptions for domain, coefficients, and boundary conditions, similar to e.g. [8]. In the case of pointwise in time and space gradient-constraints, we used slightly stronger regularity assumptions leading to a classical smoother W2,p -setting similar to [11].
elib-URL des Eintrags: | https://elib.dlr.de/216277/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Optimal control of quasilinear parabolic PDEs with gradient terms and pointwise constraints on the gradient of the state | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2025 | ||||||||||||||||||||
Erschienen in: | Mathematical Control and Related Fields | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.3934/mcrf.2025037 | ||||||||||||||||||||
Verlag: | American Institute of Mathematical Sciences | ||||||||||||||||||||
ISSN: | 2156-8472 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Optimal control, quasilinear parabolic PDE, gradient-state constraints, optimality conditions, existence of solutions | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie > High-Performance Computing Institut für Softwaretechnologie | ||||||||||||||||||||
Hinterlegt von: | Hoppe, Fabian | ||||||||||||||||||||
Hinterlegt am: | 08 Sep 2025 09:10 | ||||||||||||||||||||
Letzte Änderung: | 08 Sep 2025 09:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags