elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Towards Runtime Detection of Novel Traffic Situations

Saxena, Ishan und Grundt, Dominik und Möhlmann, Eike und Westphal, Bernd (2025) Towards Runtime Detection of Novel Traffic Situations. CEUR Workshop Proceedings. 7th International Workshop on Artificial Intelligence and fOrmal VERification, Logic, Automata, and sYnthesis (OVERLAY 2025), 2025-10-26, Bologna, Italy.

[img] PDF
1MB
[img] PDF - Nur DLR-intern zugänglich
630kB

Offizielle URL: https://overlay.uniud.it/workshop/2025/accepted/

Kurzfassung

Automated Vehicles developers need to define an Operational Design Domain (ODD) where such vehicles can operate safely. In order to extend the defined ODDs, the developers base their decision after detailed analysis of recorded data from multiple data collection drives. For the acquired data, it is important to know whether it is known traffic situation information (inside the automated vehicle's ODD) or novel information that can be used to expand the ODD. The large amount of data that is generated by a modern vehicle's sensors makes data storage and efficient analysis for expanding ODDs hardly feasible (most of the current approaches record all sensor data and then post-process the data using AI-based methods and finally perform manual checks in order to find the novel data). Hence, there is a need to classify traffic situations as novel at system runtime for an appropriately abstract notion of novelty so that the conceptually same traffic situation, e.g. on two similar days, is not considered novel only because of the different date. We propose a new methodology for detection of novel traffic situations at system runtime. The methodology is based on a traffic catalogue that consists of abstract traffic situation descriptions, which are a formalized representation of sets of concrete traffic situations. Continuous, automatic checks for satisfaction of the current traffic situation against the traffic catalogue provides verdicts about the novelty of the current traffic situation. Using an illustrative example, we show how domain experts can utilize the detected novelties to create such a traffic catalogue such that the novelties are classified as known in the future. The proposed method doesn't require any pre-training of an AI-based classifier and is human understandable, explainable and traceable.

elib-URL des Eintrags:https://elib.dlr.de/216210/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Towards Runtime Detection of Novel Traffic Situations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Saxena, Ishanishan.saxena (at) dlr.dehttps://orcid.org/0000-0003-0575-4402NICHT SPEZIFIZIERT
Grundt, Dominikdominik.grundt (at) dlr.dehttps://orcid.org/0000-0002-8233-7429NICHT SPEZIFIZIERT
Möhlmann, EikeEike.Moehlmann (at) dlr.dehttps://orcid.org/0000-0003-3815-6353NICHT SPEZIFIZIERT
Westphal, Berndbernd.westphal (at) dlr.dehttps://orcid.org/0000-0002-6824-0567NICHT SPEZIFIZIERT
Datum:Juli 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Verlag:CEUR Workshop Proceedings
Status:akzeptierter Beitrag
Stichwörter:Novel Traffic Situation Detection, Data Recording, Traffic Situations, Formal Specification, Runtime Monitoring
Veranstaltungstitel:7th International Workshop on Artificial Intelligence and fOrmal VERification, Logic, Automata, and sYnthesis (OVERLAY 2025)
Veranstaltungsort:Bologna, Italy
Veranstaltungsart:Workshop
Veranstaltungsdatum:26 Oktober 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Oldenburg
Institute & Einrichtungen:Institut für Systems Engineering für zukünftige Mobilität
Hinterlegt von: Saxena, Ishan
Hinterlegt am:02 Dez 2025 10:48
Letzte Änderung:02 Dez 2025 10:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.