elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Machine Learning-based Reentry Guidance for the ReFEx Mission: Analysis and Comparison of Reinforcement Learning and Genetic Programming

Cadamuro, Riccardo (2025) Machine Learning-based Reentry Guidance for the ReFEx Mission: Analysis and Comparison of Reinforcement Learning and Genetic Programming. Masterarbeit, Politecnico di Milano.

[img] PDF - Nur DLR-intern zugänglich
33MB

Kurzfassung

This research applies two Machine Learning (ML) techniques, Deep Reinforcement Learning (DRL) and Genetic Programming (GP), to the task of generating the online guidance command for the REusability Flight EXperiment (ReFEx) vehicle. The focus is on the atmospheric flight phase of the reentry mission, in which the models trained via DRL and GP are used to produce real-time corrections for the reference guidance command computed beforehand. This further update stage is necessary to account for external disturbances and modeling errors. The ML models are tested and validated in the 6 Degrees Of Freedom (DOF) high fidelity simulator developed for the verification and validation of the Guidance Navigation and Control (GNC) subsystem of the ReFEx mission. Both methods are compared to each other and to the baseline optimization-based guidance algorithm to assess the performances and applicability of ML techniques to a real mission. DRL and GP are chosen for their complementary features: DRL has been used to train a Multilayer Perceptron (MLP) which results in a black-box model, whereas GP can produce a human-readable continuous and differentiable model, which is available as a symbolic expression. Results show that the DRL can deliver the same performances as the baseline guidance algorithm, while the GP achieves slightly worse results still comparable to it. Moreover, both techniques feature online execution times approximately three orders of magnitude faster than the baseline optimization-based strategy.

elib-URL des Eintrags:https://elib.dlr.de/216208/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Machine Learning-based Reentry Guidance for the ReFEx Mission: Analysis and Comparison of Reinforcement Learning and Genetic Programming
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cadamuro, Riccardoriccardo.cadamuro (at) mail.polimi.itNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorMarchetti, Francescofrancesco.marchetti (at) dlr.dehttps://orcid.org/0000-0003-4552-0467
Datum:22 Juli 2025
Erschienen in:Machine Learning-based Reentry Guidance for the ReFEx Mission: Analysis and Comparison of Reinforcement Learning and Genetic Programming
Open Access:Nein
Seitenanzahl:174
Status:im Druck
Stichwörter:Machine Learning, Deep Reinforcement Learning, Genetic Programming, Atmospheric Reentry, Real Time Guidance, High Fidelity Simulation
Institution:Politecnico di Milano
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt ReFEx - Reusability Flight Experiment
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Navigations- und Regelungssysteme
Hinterlegt von: Marchetti, Francesco
Hinterlegt am:05 Sep 2025 10:47
Letzte Änderung:05 Sep 2025 10:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.