Haberl, Simon und Braun, Moritz und Ehlers, Sören (2025) Comparative Analysis of Machine Learning Methods for Predicting Structural Responses in Ship Hull Monitoring. In: ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2025, 1. ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering, 2025-06-20 - 2025-06-26, Vancouver, BC, Canada. doi: 10.1115/OMAE2025-157346. ISBN 978-079188896-4.
![]() |
PDF
1MB |
Offizielle URL: https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2025/88902/V001T02A038/1221198?searchresult=1
Kurzfassung
Monitoring of ship hulls and their technical equipment is a critical component of ensuring ship safety and operational efficiency. It plays a key role in maintaining structural integrity under dynamic and often extreme loading conditions encountered at sea. Accurate prediction of structural responses not only helps in preventing structural failures but also enables the optimization of performance, reducing operational risks and costs. The structural responses of a ship subjected to wave-induced loads can be modeled through a combination of hydrodynamic simulations and Finite Element analyses. While these simulations offer deep insights into the behavior of ship structures under varying conditions, their computational intensity and complexity present significant challenges for real-time applications. To address these limitations, this research evaluates the efficiency and accuracy of machine learning methods, specifically Artificial Neural Networks and XGBoost, in approximating and predicting structural responses.
elib-URL des Eintrags: | https://elib.dlr.de/216195/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Comparative Analysis of Machine Learning Methods for Predicting Structural Responses in Ship Hull Monitoring | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 21 August 2025 | ||||||||||||||||
Erschienen in: | ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2025 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 1 | ||||||||||||||||
DOI: | 10.1115/OMAE2025-157346 | ||||||||||||||||
ISBN: | 978-079188896-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | machine learning, hull monitoring | ||||||||||||||||
Veranstaltungstitel: | ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering | ||||||||||||||||
Veranstaltungsort: | Vancouver, BC, Canada | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 20 Juni 2025 | ||||||||||||||||
Veranstaltungsende: | 26 Juni 2025 | ||||||||||||||||
Veranstalter : | The American Society of Mechanical Engineers | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme > Schiffszuverlässigkeit | ||||||||||||||||
Hinterlegt von: | Patel, Kishan Dilip | ||||||||||||||||
Hinterlegt am: | 01 Sep 2025 13:02 | ||||||||||||||||
Letzte Änderung: | 19 Sep 2025 11:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags