elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Neural Network Prediction Uncertainty for Spacecraft Housekeeping Analysis

Jaksch, Mattis (2023) Neural Network Prediction Uncertainty for Spacecraft Housekeeping Analysis. Masterarbeit, Universität Bremen.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

The booming space industry shows us, that with growing computing power and the large number of satellites, we as humans are not capable any more to keep track of all the data being produced. This does not only include mass produced commercial spacecraft but also tailored scientific missions by now. But as measurements with high data throughput are already sorted by advanced algorithms, the satellites health status described by it’s housekeeping data is still under strict surveillance by humans on a higher level. This shows that there is still room for improvement regarding spacecraft autonomy with methods from the newly emerging field of machine and deep learning. Therefore we created ways and generic methods for analysing specifically satellite housekeeping data. This meant to first understand the data, to regularize and normalize it. And secondly, to identify as well as generate useful features for a further automatic process. With this process, a regression analysis was made to predict future values and also give the variance to increase the credibility of the result. All this has been done with parts of the Rosetta housekeeping data as a case study

elib-URL des Eintrags:https://elib.dlr.de/216167/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Neural Network Prediction Uncertainty for Spacecraft Housekeeping Analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jaksch, Mattismattis.jaksch (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorMeß, Jan-GerdJan-Gerd.Mess (at) dlr.dehttps://orcid.org/0000-0002-2117-3483
Datum:2023
Open Access:Nein
Seitenanzahl:69
Status:veröffentlicht
Stichwörter:Telemetry Prediction, Neural Network, AI, Spacecraft
Institution:Universität Bremen
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Cognitive Autonomy for Space Systems (CASSy)
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Avioniksysteme
Hinterlegt von: Meß, Jan-Gerd
Hinterlegt am:02 Sep 2025 11:48
Letzte Änderung:04 Sep 2025 11:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.