elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Particle mechanics and mixture homogeneity in a demonstration reactor system for the indirect reduction of redox particles

Richter, Sebastian und Grobbel, Johannes und Brendelberger, Stefan und Roeb, Martin und Sattler, Christian (2025) Particle mechanics and mixture homogeneity in a demonstration reactor system for the indirect reduction of redox particles. Solar Energy, 292, Seite 113403. Elsevier. doi: 10.1016/j.solener.2025.113403. ISSN 0038-092X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0038092X25001665

Kurzfassung

Many studies on two-step solar-thermochemical redox cycles for fuel production consider a combined receiver-reactor to perform the concurrent sub-processes of radiation absorption and reaction, which implies process limitations and increased technical complexity. Designed to circumvent this, an indirect concept uses an inert Al2O3 particle cycle absorbing heat in a receiver and transferring it to the particulate SrFeO3 redox material in a common reactor. This Particle Mix Reactor (PMR) has been experimentally demonstrated and is investigated here in terms of particle mechanics by both measurement and simulation. With a newly developed tool for experimental particle bed segmentation, the spatial distribution of mixture homogeneity could be determined. DEM simulations - beneficial for the representation of dissimilar particle types - require mechanical contact parameters, that were obtained via an adapted systematic calibration procedure. Al2O3 and SrFeO3 particles clearly differ in their results for similar collisions, especially concerning the rolling friction coefficient and the coefficient of restitution. Experimental results were reproducible, and no effect of temperature on mixture homogeneity could be identified. A significant improvement potential of mixture quality was revealed, with Al2O3 to SrFeO3 particle mass ratios of about 3.5 for the upmost bed layer and of about 0.5 for the lower ones. Simulation results are satisfactorily consistent with experimental results, both qualitatively for particle motion, and for mixture homogeneity at a mean deviation of 26%. This makes the simulation model valid for further design and optimization purposes and facilitates the subsequent analysis of simulated temperature results.

elib-URL des Eintrags:https://elib.dlr.de/216157/
Dokumentart:Zeitschriftenbeitrag
Titel:Particle mechanics and mixture homogeneity in a demonstration reactor system for the indirect reduction of redox particles
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Richter, SebastianSebastian.Richter (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Grobbel, JohannesJohannes.Grobbel (at) dlr.dehttps://orcid.org/0000-0002-9942-5484NICHT SPEZIFIZIERT
Brendelberger, StefanStefan.Brendelberger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Roeb, MartinMartin.Roeb (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sattler, ChristianChristian.Sattler (at) dlr.dehttps://orcid.org/0000-0002-4314-1124NICHT SPEZIFIZIERT
Datum:18 März 2025
Erschienen in:Solar Energy
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:292
DOI:10.1016/j.solener.2025.113403
Seitenbereich:Seite 113403
Verlag:Elsevier
ISSN:0038-092X
Status:veröffentlicht
Stichwörter:Solar fuels;Thermochemical cycles;Reduction reactor;Particle mixing;DEM;Contact parameters
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Brennstoffe, E - Thermochemische Prozesse
Standort: Jülich
Institute & Einrichtungen:Institut für Future Fuels > Solare Prozessdemonstration
Institut für Future Fuels > Solarchemische Verfahrensentwicklung
Hinterlegt von: Grobbel, Johannes
Hinterlegt am:09 Sep 2025 09:50
Letzte Änderung:09 Sep 2025 09:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.