elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

A Comparative Study of Component Surrogate Model Approximation for Holistic, Multi-Disciplinary Optimization of High Temperature Heat Pumps

Gollasch, Jens Oliver und Lockan, Michael (2025) A Comparative Study of Component Surrogate Model Approximation for Holistic, Multi-Disciplinary Optimization of High Temperature Heat Pumps. In: ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2025. ASME Turbo Expo 2025: Turbomachinery Technical Conference and Exposition, 2025-06-16 - 2025-06-20, Memphis, USA. doi: 10.1115/GT2025-152774. ISBN ISBN: 978-0-7918-8880-3.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

Fast and reliable design methods are essential to reach the highest possible efficiency of high temperature heat pumps and enable their full potential. The heat pumps performance is strongly dependent on the efficiency of its components like turbomachines and heat exchangers. Conventional design is a sequential procedure starting with the cycle conceptualization. Component performance is initially based on assumptions and their design is optimized in subsequent steps with increasing level of detail. This sequential aspect makes it impossible to find the overall optimal heat pump configuration. To overcome this, holistic design strategies optimize the cycle parameters simultaneously with detailed geometric component design. This concept leads to significantly improved heat pump performance, saves time and reduces uncertainty. Multi-disciplinary optimizations are complex problems with a high number of design variables. This paper addresses two aspects of holistic heat pump design: A collaborative design architecture is introduced as a multilevel approach. Multiple components are designed in subproblems, which leads to a high number of required simulations. To mitigate high computational effort, the second focus is on approximation of the component analyses with the use of computationally inexpensive surrogate models. It is found that Gaussian process regression is most accurate and outperforms both linear regression and radial basis functions. In comparison to previous studies, the number of iterations for holistic design is drastically reduced to only 500. The presented optimization architecture also accelerates the process producing results in 35 CPU hours. The overall number of function evaluations for complex compressor design can be kept below 1000 simulations. In conclusion, the proposed strategy is very promising for application in future heat pump design with high potential for further research.

elib-URL des Eintrags:https://elib.dlr.de/216066/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A Comparative Study of Component Surrogate Model Approximation for Holistic, Multi-Disciplinary Optimization of High Temperature Heat Pumps
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gollasch, Jens OliverJens.Gollasch (at) dlr.dehttps://orcid.org/0000-0002-9825-4599191226832
Lockan, Michaelmichael.lockan (at) dlr.dehttps://orcid.org/0009-0002-8765-8667191226833
Datum:11 August 2025
Erschienen in:ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1115/GT2025-152774
ISBN:ISBN: 978-0-7918-8880-3
Status:veröffentlicht
Stichwörter:multi-disciplinary optimization, holistic design, heat pump, surrogate modeling, active learning, holistic design, heat pump, surrogate modeling, active learning
Veranstaltungstitel:ASME Turbo Expo 2025: Turbomachinery Technical Conference and Exposition
Veranstaltungsort:Memphis, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 Juni 2025
Veranstaltungsende:20 Juni 2025
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Dekarbonisierte Industrieprozesse
Standort: Cottbus
Institute & Einrichtungen:Institut für CO2-arme Industrieprozesse > Hochtemperaturwärmepumpen
Institut für CO2-arme Industrieprozesse > Simulation und Virtuelles Design
Hinterlegt von: Gollasch, Jens Oliver
Hinterlegt am:05 Sep 2025 11:16
Letzte Änderung:05 Sep 2025 11:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.