Ravanbach, Babak und Mantri, Hrushikesh und Essayeh, Chaimaa und Matias, Samuel (2025) Data-Driven Load Profile Forecasting for EV Charging Stations Leveraging Spatial Dependency Modeling. In: 21th International Conference on the European Energy Market, EEM 2025. IEEE. 2025 21st International Conference on the European Energy Market (EEM), 2025-05-27 - 2025-05-29, Lisbon, Portugal. doi: 10.1109/EEM64765.2025.11050235. ISBN 979-8-3315-1278-1. ISSN 2165-4093.
![]() |
PDF
582kB |
Offizielle URL: https://ieeexplore.ieee.org/document/11050235
Kurzfassung
Accurate forecasting of energy demand at electric vehicle charging stations is critical for efficient energy management, reducing grid stress, and supporting the expansion of sustainable transport infrastructure. In this study, we introduce a novel forecasting approach that leverages spatial dependencies across a network of charging stations to improve the predictions of energy demand. Using EMOTION data from the city of Galantina, Italy, our model integrates information from nearby stations, capturing local demand patterns and spatial correlations through the use of two advanced recurrent neural network models, Long Short-Term Memory network (LSTM) and Graph Convolutional Long Short Term Memory (GCLSTM). The model is designed to predict energy demand by learning dynamic interdependencies within the city's charging network, where each station's demand is influenced by spatially adjacent stations and its distance to the city center. The LSTM model, which treats charging stations as independent entities, achieved an overall Mean Absolute Error (MAE) of 0.34, while GCLSTM reached 0.45 MAE. However, GCLSTM outperformed LSTM for stations located near other charging stations, demonstrating its ability to take advantage of spatial dependencies. This suggests that geobased prediction models are particularly beneficial for dense urban areas with multiple charging stations, such as city centers.
elib-URL des Eintrags: | https://elib.dlr.de/215981/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Data-Driven Load Profile Forecasting for EV Charging Stations Leveraging Spatial Dependency Modeling | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 7 Juli 2025 | ||||||||||||||||||||
Erschienen in: | 21th International Conference on the European Energy Market, EEM 2025 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/EEM64765.2025.11050235 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISSN: | 2165-4093 | ||||||||||||||||||||
ISBN: | 979-8-3315-1278-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Energy load profile, Urban areas, Charging stations, Predictive models, Electric vehicle charging, Data models, Forecasting, Machine learning, Long short term memory | ||||||||||||||||||||
Veranstaltungstitel: | 2025 21st International Conference on the European Energy Market (EEM) | ||||||||||||||||||||
Veranstaltungsort: | Lisbon, Portugal | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 27 Mai 2025 | ||||||||||||||||||||
Veranstaltungsende: | 29 Mai 2025 | ||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemtechnologie | ||||||||||||||||||||
Hinterlegt von: | Ravanbach, Babak | ||||||||||||||||||||
Hinterlegt am: | 21 Aug 2025 14:24 | ||||||||||||||||||||
Letzte Änderung: | 21 Aug 2025 14:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags