elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Data-Driven Load Profile Forecasting for EV Charging Stations Leveraging Spatial Dependency Modeling

Ravanbach, Babak und Mantri, Hrushikesh und Essayeh, Chaimaa und Matias, Samuel (2025) Data-Driven Load Profile Forecasting for EV Charging Stations Leveraging Spatial Dependency Modeling. In: 21th International Conference on the European Energy Market, EEM 2025. IEEE. 2025 21st International Conference on the European Energy Market (EEM), 2025-05-27 - 2025-05-29, Lisbon, Portugal. doi: 10.1109/EEM64765.2025.11050235. ISBN 979-8-3315-1278-1. ISSN 2165-4093.

[img] PDF
582kB

Offizielle URL: https://ieeexplore.ieee.org/document/11050235

Kurzfassung

Accurate forecasting of energy demand at electric vehicle charging stations is critical for efficient energy management, reducing grid stress, and supporting the expansion of sustainable transport infrastructure. In this study, we introduce a novel forecasting approach that leverages spatial dependencies across a network of charging stations to improve the predictions of energy demand. Using EMOTION data from the city of Galantina, Italy, our model integrates information from nearby stations, capturing local demand patterns and spatial correlations through the use of two advanced recurrent neural network models, Long Short-Term Memory network (LSTM) and Graph Convolutional Long Short Term Memory (GCLSTM). The model is designed to predict energy demand by learning dynamic interdependencies within the city's charging network, where each station's demand is influenced by spatially adjacent stations and its distance to the city center. The LSTM model, which treats charging stations as independent entities, achieved an overall Mean Absolute Error (MAE) of 0.34, while GCLSTM reached 0.45 MAE. However, GCLSTM outperformed LSTM for stations located near other charging stations, demonstrating its ability to take advantage of spatial dependencies. This suggests that geobased prediction models are particularly beneficial for dense urban areas with multiple charging stations, such as city centers.

elib-URL des Eintrags:https://elib.dlr.de/215981/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Data-Driven Load Profile Forecasting for EV Charging Stations Leveraging Spatial Dependency Modeling
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ravanbach, BabakBabak.Ravanbach (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mantri, Hrushikeshhrushikesh.mantri (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Essayeh, Chaimaachaimaa.essayeh (at) ntu.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Matias, SamuelSAMUEL.MATIAS (at) EDP.PTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:7 Juli 2025
Erschienen in:21th International Conference on the European Energy Market, EEM 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/EEM64765.2025.11050235
Verlag:IEEE
ISSN:2165-4093
ISBN:979-8-3315-1278-1
Status:veröffentlicht
Stichwörter:Energy load profile, Urban areas, Charging stations, Predictive models, Electric vehicle charging, Data models, Forecasting, Machine learning, Long short term memory
Veranstaltungstitel:2025 21st International Conference on the European Energy Market (EEM)
Veranstaltungsort:Lisbon, Portugal
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:27 Mai 2025
Veranstaltungsende:29 Mai 2025
HGF - Forschungsbereich:Energie
HGF - Programm:Energiesystemdesign
HGF - Programmthema:Digitalisierung und Systemtechnologie
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemtechnologie und -analyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Energiesystemtechnologie
Standort: Oldenburg
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Energiesystemtechnologie
Hinterlegt von: Ravanbach, Babak
Hinterlegt am:21 Aug 2025 14:24
Letzte Änderung:21 Aug 2025 14:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.