elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Tree species from space: a new product for Germany based on Sentinel-1 and -2 time series

Wegler, Marco und Kacic, Patrick und Thonfeld, Frank und Holzwarth, Stefanie und Jaggy, Niklas und Gessner, Ursula und Künzer, Claudia (2025) Tree species from space: a new product for Germany based on Sentinel-1 and -2 time series. International Journal of Remote Sensing, 46 (16), Seiten 1-34. Taylor & Francis. doi: 10.1080/01431161.2025.2530236. ISSN 0143-1161.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://www.tandfonline.com/doi/full/10.1080/01431161.2025.2530236

Kurzfassung

German forests are increasingly threatened by climate change, highlighting the need to understand tree species composition to preserve biodiversity, ecosystem resilience and climate regulation. Assessing tree species distribution is essential for effective forest management and adaptation to changing environmental conditions. The current remote-sensing-based dominant tree species products for Germany are based on reference data from the National Forest Inventory (NFI). The NFI data for Germany is not accessible to the general public, due to considerations pertaining to the safeguarding of individual privacy and the avoidance of unintended disruption to the dataset. Information on specific tree species can also be obtained from alternative sources. We collected a total of over 80 000 samples on dominant tree species across Germany by utilizing a range of databases, including city tree registers, Google Earth Pro, Google Street View, and our own on-site observations in order to generate a reference database. Spatio-temporal composites derived from Sentinel-2 (S2) and Sentinel-1 (S1) satellites, combined with a digital elevation model (DEM), were utilized to generate products showcasing the distribution of 10 specific tree species groups across Germany in 2022. This approach enabled continuous mapping of dominant tree species at a 10-m resolution. The accuracy of different machine learning algorithms was assessed using various data combinations. The combination of S2, S1, and DEM yielded the highest overall F1-Score of 0.89. S2 alone achieved results that were nearly as accurate with an F1-Score of 0.86. The optimal model (S2-S1-DEM) demonstrated an F1-Score range of 0.76 to 0.98 for the four primary tree species (pine, spruce, beech, and oak). For other common tree species, including birch, alder, larch, Douglas fir, and fir, the F1-Score ranges from 0.88 to 0.96. Here, we present a cost-effective and reproducible method for monitoring tree species in response to the rapid changes occurring in German forests.

elib-URL des Eintrags:https://elib.dlr.de/215836/
Dokumentart:Zeitschriftenbeitrag
Titel:Tree species from space: a new product for Germany based on Sentinel-1 and -2 time series
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wegler, Marcomarco.wegler (at) dlr.dehttps://orcid.org/0009-0003-5434-5813190897009
Kacic, PatrickPatrick.Kacic (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thonfeld, FrankFrank.Thonfeld (at) dlr.dehttps://orcid.org/0000-0002-3371-7206190897010
Holzwarth, StefanieStefanie.Holzwarth (at) dlr.dehttps://orcid.org/0000-0001-7364-7006NICHT SPEZIFIZIERT
Jaggy, Niklasniklas.jaggy (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gessner, Ursulaursula.gessner (at) dlr.dehttps://orcid.org/0000-0002-8221-2554190897011
Künzer, ClaudiaClaudia.Kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:20 Juli 2025
Erschienen in:International Journal of Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:46
DOI:10.1080/01431161.2025.2530236
Seitenbereich:Seiten 1-34
Verlag:Taylor & Francis
ISSN:0143-1161
Status:veröffentlicht
Stichwörter:Tree species; forest; Germany; time series;machine learning; earth observation; remote sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Wegler, Marco
Hinterlegt am:01 Sep 2025 09:54
Letzte Änderung:04 Sep 2025 10:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.