Patel, Kishan Dilip und Salin, Athira und Stender, Merten und Braun, Moritz und Ehlers, Sören (2025) Lithium-ion Battery Degradation Forecasting using Data-Driven Time Series Models. In: ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2025, 7. 44th International Conference on Ocean, Offshore and Arctic Engineering OMAE2025, 2025-06-20 - 2025-06-26, Vancouver, BC, Canada. doi: 10.1115/OMAE2025-156104. ISBN 978-079188896-4.
![]() |
PDF
1MB |
Offizielle URL: https://asmedigitalcollection.asme.org/OMAE
Kurzfassung
The maritime industry faces significant challenges as it adapts from a major carbon emitter to a low-emission sector, intending to eventually achieve zero emissions. This transition requires innovative solutions for both new and old vessels, lithium-ion batteries show promise in achieving these goals. Battery management systems improve reliability and safety by monitoring voltage, current, and temperature through sensors. These parameters enable the prediction of remaining usable life, allowing for prompt maintenance and replacement before failure occurs. Publicly accessible lithium battery datasets provide a useful starting point for predictive degradation model development. This study investigates time series modeling methodologies for lithium-ion battery degradation, utilizing NASA’s battery degradation dataset. Three models viz. Autoregressive, Autoregressive Integrated Moving Average, and its extension using seasonality parameters were developed. They were tested with four train/test ratios to predict the remaining useful life values and assess the accuracy of the predicted degradation curve against experimental results. From the results, it was observed that the Autoregressive Integrated Moving Average model had the least combined average Root Mean Square Error values, resulting in a good overall degradation curve fitting, whereas the Seasonal Autoregressive Integrated Moving Average model was able to predict the End of Life values more accurately.
elib-URL des Eintrags: | https://elib.dlr.de/215729/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Lithium-ion Battery Degradation Forecasting using Data-Driven Time Series Models | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 21 August 2025 | ||||||||||||||||||||||||
Erschienen in: | ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2025 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 7 | ||||||||||||||||||||||||
DOI: | 10.1115/OMAE2025-156104 | ||||||||||||||||||||||||
Name der Reihe: | ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering | ||||||||||||||||||||||||
ISBN: | 978-079188896-4 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Lithium-ion batteries, Data Driven Time Series Model, AR, ARIMA, SARIMA, Remaining Useful Life | ||||||||||||||||||||||||
Veranstaltungstitel: | 44th International Conference on Ocean, Offshore and Arctic Engineering OMAE2025 | ||||||||||||||||||||||||
Veranstaltungsort: | Vancouver, BC, Canada | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 20 Juni 2025 | ||||||||||||||||||||||||
Veranstaltungsende: | 26 Juni 2025 | ||||||||||||||||||||||||
Veranstalter : | The American Society of Mechanical Engineers | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme > Schiffszuverlässigkeit | ||||||||||||||||||||||||
Hinterlegt von: | Patel, Kishan Dilip | ||||||||||||||||||||||||
Hinterlegt am: | 28 Aug 2025 12:24 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Sep 2025 10:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags