elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Optimizing Market Scenarios for Battery Electric Vehicles through a Machine Learning based Manufacturer Agent

Hasselwander, Samuel und Rettich, Julian (2025) Optimizing Market Scenarios for Battery Electric Vehicles through a Machine Learning based Manufacturer Agent. In: 38th International Electric Vehicle Symposium and Exhibition (EVS38). 38th International Electric Vehicle Symposium and Exhibition (EVS38), 2025-06-15 - 2025-06-18, Götheborg.

[img] PDF - Nur DLR-intern zugänglich
677kB
[img] PDF - Nur DLR-intern zugänglich
7MB

Kurzfassung

The automotive industry is transitioning to electromobility to meet the global climate goals by 2050. This shift is changing people's purchasing priorities and the composition of the vehicle market. The manufacturers are therefore at a critical point in terms of product development and resource and supply chain management, requiring a deeper understanding of future vehicle design. To analyze possible upcoming vehicle models, a machine learning based manufacturer agent was developed, incorporating a comprehensive technology database and historical vehicle data. Over 3,000 new battery electric vehicle models are generated and evaluated according to their possible year of market entry. The most relevant models are then integrated into the VECTOR21 vehicle technology scenario model to assess their market potential against competing drivetrain types. The results of the battery diversification scenario show a market share for vehicles with lithium iron phosphate cell chemistry of more than 18% in 2030, while nickel rich cells will remain competitive especially in the long-range vehicle variants with up to 53% market potential by 2035. Vehicles that feature sodium-ion batteries could capture a market share of around 9% by 2030, with a potential to increase to more than 17% if cell prices would fall below 50 EUR/kWh. As long as there is no disruptive increase in energy density or a noticeable reduction in expected production costs, the market potential for solid state batteries in the German passenger vehicle market would only be 2% in 2035.

elib-URL des Eintrags:https://elib.dlr.de/215599/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Optimizing Market Scenarios for Battery Electric Vehicles through a Machine Learning based Manufacturer Agent
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hasselwander, SamuelSamuel.Hasselwander (at) dlr.dehttps://orcid.org/0000-0002-0805-9061NICHT SPEZIFIZIERT
Rettich, JulianNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:17 Juli 2025
Erschienen in:38th International Electric Vehicle Symposium and Exhibition (EVS38)
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:battery electric vehicle, machine learning, agent
Veranstaltungstitel:38th International Electric Vehicle Symposium and Exhibition (EVS38)
Veranstaltungsort:Götheborg
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 Juni 2025
Veranstaltungsende:18 Juni 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - MoDa - Models and Data for Future Mobility_Supporting Services
Standort: Stuttgart
Institute & Einrichtungen:Institut für Fahrzeugkonzepte > Fahrzeugsysteme und Technologiebewertung
Hinterlegt von: Hasselwander, Samuel
Hinterlegt am:13 Aug 2025 11:27
Letzte Änderung:13 Aug 2025 11:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.