Ganganee, D. D. K. und Ranasinghe, J. A. G. G. und Mathusha, S. und KUMARAWADU, S. und Rajakaruna Wanigasekara, Chathura und LOGEESHAN, V. (2025) An AI-based Approach for Improved Power Quality Disturbances Detection and Classification. In: 6th IEEE Annual World AI IoT Congress, AIIoT 2025. IEEE. 2025 IEEE World AI IoT Congress (AIIoT), 2025-05-28 - 2025-05-30, Seattle, WA, USA. doi: 10.1109/AIIoT65859.2025.11105347. ISBN 979-833152508-8.
|
PDF
- Nur DLR-intern zugänglich
293kB |
Offizielle URL: https://ieeexplore.ieee.org/document/11105347
Kurzfassung
Power quality disturbances (PQDs) have become more common in contemporary electrical systems due to the increasing implementation of non-linear loads and renewable energy technologies that use power electronics. Traditional machine learning techniques mostly depend on manually engineered features to detect and classify PQDs. Those restricts their ability to generalize across various PQD categories. In our research, we are going to present an enhanced deep learning methodology for accurately identifying and categorizing multiple power quality disturbances using AI techniques. We used the SEED Power Quality Disturbance Dataset for training and testing our models. We developed and evaluated four artificial intelligence approaches: one-dimensional Convolutional Neural Network (CNN- 1D), conventional CNN, Long Short-Term Memory (LSTM), and a combined CNN-LSTM architecture. The CNN-LSTM hybrid model outperformed others in classification accuracy. This research highlights the superiority of deep learning models in automatically learning temporal and spatial features, thus eliminating the need for manual feature extraction.
| elib-URL des Eintrags: | https://elib.dlr.de/215547/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||||||
| Titel: | An AI-based Approach for Improved Power Quality Disturbances Detection and Classification | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | September 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | 6th IEEE Annual World AI IoT Congress, AIIoT 2025 | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
| DOI: | 10.1109/AIIoT65859.2025.11105347 | ||||||||||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||||||||||
| ISBN: | 979-833152508-8 | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | Power Quality Disturbances, Detection and classification, Deep Learning, CNN, LSTM, CNN-LSTM, PQD | ||||||||||||||||||||||||||||
| Veranstaltungstitel: | 2025 IEEE World AI IoT Congress (AIIoT) | ||||||||||||||||||||||||||||
| Veranstaltungsort: | Seattle, WA, USA | ||||||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
| Veranstaltungsbeginn: | 28 Mai 2025 | ||||||||||||||||||||||||||||
| Veranstaltungsende: | 30 Mai 2025 | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||
| HGF - Programmthema: | E - keine Zuordnung | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | E - keine Zuordnung | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | E - keine Zuordnung | ||||||||||||||||||||||||||||
| Standort: | Geesthacht | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Maritime Energiesysteme > Energiekonverter und -systeme | ||||||||||||||||||||||||||||
| Hinterlegt von: | Rajakaruna Wanigasekara, Chathura | ||||||||||||||||||||||||||||
| Hinterlegt am: | 29 Sep 2025 07:47 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 29 Sep 2025 07:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags