Samarathunga, Kaveesha und Gurusinghe, Ranuri und Sivasothynathan, Kugesan und Rajakaruna Wanigasekara, Chathura und Mars, Jason und LOGEESHAN, V. (2025) LLM-Guided Multi-Agent System for Natural Language-Based Robot Navigation. In: 6th IEEE Annual World AI IoT Congress, AIIoT 2025. IEEE. 2025 IEEE World AI IoT Congress (AIIoT), 2025-05-28 - 2025-05-30, Seattle, WA, USA. doi: 10.1109/AIIoT65859.2025.11105295. ISBN 979-833152508-8.
|
PDF
- Nur DLR-intern zugänglich
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11105295
Kurzfassung
Natural language-driven robot navigation has the potential to make human-robot interactions more intuitive. This paper presents an innovative approach that integrates a Large Language Model (LLM) with a Multi-Agent System (MAS) to enable autonomous robot navigation in response to verbal commands. We use GPT-4o for interpreting user commands, LangChain and LangGraph for MAS-based decision-making, and Rapidly-Exploring Random Tree (RRT) for path planning. The system is simulated in Webots, demonstrating its adaptability in various environments. Our results show that the integration of LLM and MAS enhances decision-making efficiency and enables flexible, real-time path adjustments.
| elib-URL des Eintrags: | https://elib.dlr.de/215543/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||||||
| Titel: | LLM-Guided Multi-Agent System for Natural Language-Based Robot Navigation | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | September 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | 6th IEEE Annual World AI IoT Congress, AIIoT 2025 | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
| DOI: | 10.1109/AIIoT65859.2025.11105295 | ||||||||||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||||||||||
| ISBN: | 979-833152508-8 | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | Multi Agentic System (MAS), Large Language Models (LLM) | ||||||||||||||||||||||||||||
| Veranstaltungstitel: | 2025 IEEE World AI IoT Congress (AIIoT) | ||||||||||||||||||||||||||||
| Veranstaltungsort: | Seattle, WA, USA | ||||||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
| Veranstaltungsbeginn: | 28 Mai 2025 | ||||||||||||||||||||||||||||
| Veranstaltungsende: | 30 Mai 2025 | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||||||
| Standort: | Geesthacht | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Maritime Energiesysteme > Energiekonverter und -systeme | ||||||||||||||||||||||||||||
| Hinterlegt von: | Rajakaruna Wanigasekara, Chathura | ||||||||||||||||||||||||||||
| Hinterlegt am: | 29 Sep 2025 07:46 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 29 Sep 2025 07:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags