Gessner, Ursula und Hirner, Andreas und Asam, Sarah und Wenzl, Martina und Künzer, Claudia (2025) Combining Machine Learning and Spatiotemporal Filtering to Map Crop Types of Germany for Seven Years. IEEE Geoscience and Remote Sensing Letters, 22, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2025.3587517. ISSN 1545-598X.
![]() |
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11075699
Kurzfassung
Knowledge of the distribution of crop types and their sequence over the years is essential not only for scientific applications but also for supporting informed planning for food security, climate adaptation and mitigation, agroecology, and landscape diversity. For Germany, crop type information is collected as part of the subsidy management, but data access is restricted for certain years and Federal States. Remote sensing time series of sensors, such as Sentinel-1 and Sentinel-2, allows national mapping of crop types at field scale. This has been demonstrated in previous literature, which describe crop type mapping of Germany for one to three years. Here, we demonstrate a two-phase crop type classification methodology based on Sentinel-1 and Sentinel-2 data. The approach combines machine learning (ML)-based classification with spatial and temporal analyses. The methodology was used to create a novel and most recent seven-year time series (2018–2024) for Germany at 10-m spatial resolution separating 18 classes. The two-phase approach led to annual overall accuracies (OAs) of 0.81-0.83 with average class-specific F1-scores ranging from around 0.56-0.99
elib-URL des Eintrags: | https://elib.dlr.de/215530/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Combining Machine Learning and Spatiotemporal Filtering to Map Crop Types of Germany for Seven Years | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2025 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 22 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2025.3587517 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Agriculture, Central Europe, cropland, grassland, integrated administration and control system (IACS), random forest (RF), time series | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||||||||||
Hinterlegt von: | Gessner, Ursula | ||||||||||||||||||||||||
Hinterlegt am: | 31 Jul 2025 09:39 | ||||||||||||||||||||||||
Letzte Änderung: | 31 Jul 2025 09:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags