Sahler, Kerstin und Jentzsch, Sophie Freya (2025) Evaluating Prompt Engineering Strategies for Sentiment Control in AI-Generated Texts. In: HHAI 2025: The 4th International Conference Series on Hybrid Human-Artificial Intelligence. HHAI 2025: The 4th International Conference Series on Hybrid Human-Artificial Intelligence, 2025-06-09 - 2025-06-13, Pisa, Italien.
|
PDF
643kB |
Kurzfassung
The groundbreaking capabilities of Large Language Models (LLMs) offer new opportunities for enhancing human-computer interaction through emotion-adaptive Artificial Intelligence (AI). However, deliberately controlling the sentiment in these systems remains challenging. The present study investigates the potential of prompt engineering for controlling sentiment in LLM-generated text, providing a resource-sensitive and accessible alternative to existing methods. Using Ekman's six basic emotions (e.g., joy, disgust), we examine various prompting techniques, including Zero-Shot and Chain-of-Thought prompting using \textit{gpt-3.5-turbo}, and compare it to fine-tuning. Our results indicate that prompt engineering effectively steers emotions in AI-generated texts, offering a practical and cost-effective alternative to fine-tuning, especially in data-constrained settings. In this regard, Few-Shot prompting with human-written examples was the most effective among other techniques, likely due to the additional task-specific guidance. The findings contribute valuable insights towards developing emotion-adaptive AI systems.
| elib-URL des Eintrags: | https://elib.dlr.de/215429/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
| Titel: | Evaluating Prompt Engineering Strategies for Sentiment Control in AI-Generated Texts | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 13 Juni 2025 | ||||||||||||
| Erschienen in: | HHAI 2025: The 4th International Conference Series on Hybrid Human-Artificial Intelligence | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Nein | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Large Language Model, Generative AI, Prompt Engineering, Human-centered AI, Fine-tuning, Affect, Emotion, Sentiment | ||||||||||||
| Veranstaltungstitel: | HHAI 2025: The 4th International Conference Series on Hybrid Human-Artificial Intelligence | ||||||||||||
| Veranstaltungsort: | Pisa, Italien | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 9 Juni 2025 | ||||||||||||
| Veranstaltungsende: | 13 Juni 2025 | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||
| Standort: | Rhein-Sieg-Kreis | ||||||||||||
| Institute & Einrichtungen: | Institut für Softwaretechnologie Institut für Softwaretechnologie > Intelligente und verteilte Systeme | ||||||||||||
| Hinterlegt von: | Sahler, Kerstin | ||||||||||||
| Hinterlegt am: | 20 Aug 2025 11:08 | ||||||||||||
| Letzte Änderung: | 04 Sep 2025 10:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags