elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Sentinel-2 Masking CNNs Trained on Physics-Supervised Labels

Padilla-Zepeda, Efrain und Alonso, Kevin und de los Reyes, Raquel und Torres-Roman, Deni Librado und Pertiwi, Avi Putri und Storch, Tobias (2025) Sentinel-2 Masking CNNs Trained on Physics-Supervised Labels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18, Seiten 17247-17264. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2025.3581058. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
15MB

Offizielle URL: https://dx.doi.org/10.1109/JSTARS.2025.3581058

Kurzfassung

This article presents a method to improve pixel-level classification of Sentinel-2 imagery by integrating spectral index-based masking with deep learning approaches using 1-D, 2-D, and 3-D convolutional neural networks (CNN1D, CNN2D, and CNN3D). Rather than relying on manually labeled data, the proposed method selects high-quality training samples from Python-based atmospheric correction software (PACO), using pixel selection strategies to remove ambiguous or inconsistent labels. Three selection strategies are explored: full inclusion, uniqueness-based filtering, and physics-based rules. Unlike traditional masking algorithms based only on spectral indices, the CNN models leverage spatial correlations among neighboring pixels across all spectral bands, plus auxiliary features like elevation and illumination, enabling the extraction of more informative representations and improved classification accuracy, particularly in complex scenes. The model is trained using a large global training dataset from PACO, while a separate validation dataset from the same source is used to monitor performance during learning and prevent overfitting. Final evaluation is performed using two independent manually labeled testing datasets (TD1 and TD2) that span diverse land cover types and atmospheric conditions. Compared to PACO’s baseline classification, our CNN approaches achieve consistent improvements for normalized Matthews correlation coefficient, with maximum gains of +3.3 percentage points (pp) on TD1 (from 0.855 to 0.888) and +18.3pp on TD2 (from 0.665 to 0.848). The largest class-wise gains are observed for shadows and clear land-related classes, with up to +22.7pp improvement. These results confirm the effectiveness of the proposed training strategy and its potential for improving label quality in large-scale Earth observation pipelines.

elib-URL des Eintrags:https://elib.dlr.de/215344/
Dokumentart:Zeitschriftenbeitrag
Titel:Sentinel-2 Masking CNNs Trained on Physics-Supervised Labels
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Padilla-Zepeda, EfrainEfrain.Padilla (at) dlr.dehttps://orcid.org/0000-0002-9880-7157188173413
Alonso, KevinKevin.Alonso (at) esa.inthttps://orcid.org/0000-0003-2469-8290NICHT SPEZIFIZIERT
de los Reyes, RaquelRaquel.delosReyes (at) dlr.dehttps://orcid.org/0000-0003-0485-9552188173415
Torres-Roman, Deni LibradoDeni.Torres (at) cinvestav.mxNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pertiwi, Avi PutriAvi.Pertiwi (at) dlr.dehttps://orcid.org/0000-0002-8819-860XNICHT SPEZIFIZIERT
Storch, TobiasTobias.Storch (at) dlr.dehttps://orcid.org/0000-0001-8853-8996NICHT SPEZIFIZIERT
Datum:19 Juni 2025
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:18
DOI:10.1109/JSTARS.2025.3581058
Seitenbereich:Seiten 17247-17264
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Remote sensing;Classification algorithms;Earth;Training;Convolutional neural networks;Optical sensors;Feature extraction;Deep learning;Atmospheric modeling;Optical reflection;Classification;deep learning;masking algorithm;multispectral;pixel-level;sentinel-2
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Berlin-Adlershof , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Abbildende Spektroskopie
Hinterlegt von: Padilla, Efrain
Hinterlegt am:18 Jul 2025 12:55
Letzte Änderung:18 Jul 2025 12:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.