Imani, Maryam und Cerra, Daniele (2025) Collaborative Representation Based Attention Network for Hyperspectral Anomaly Detection. IEEE Geoscience and Remote Sensing Letters, 22, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2025.3588163. ISSN 1545-598X.
![]() |
PDF
- Postprintversion (akzeptierte Manuskriptversion)
650kB |
Offizielle URL: https://ieeexplore.ieee.org/document/11078303
Kurzfassung
The Collaborative Representation-based Detector (CRD) performs anomaly detection for hyperspectral data using a linear representation of local neighbors for background estimation, which may not fully capture the informational content and spectral variability in complex hyperspectral images with heterogenous background. To deal with this aspect, the Collaborative Representation-based Attention Network (CRAN) is introduced in this letter, providing a nonlinear representation of data samples for background estimation. Both local neighbors and global samples are used in parallel, and their outputs are fused through a cross-attention mechanism. Experimental results show a good performance of CRAN in comparison with several state-of-the-art anomaly detectors.
elib-URL des Eintrags: | https://elib.dlr.de/215228/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Collaborative Representation Based Attention Network for Hyperspectral Anomaly Detection | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 11 Juli 2025 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 22 | ||||||||||||
DOI: | 10.1109/LGRS.2025.3588163 | ||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Detectors;Dictionaries;Hyperspectral imaging;Anomaly detection;Estimation;Collaboration;Training;Kernel;Feature extraction;Vectors;collaborative representation;cross-attention;hyperspectral anomaly detection;convolutional neural network | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Abbildende Spektroskopie | ||||||||||||
Hinterlegt von: | Cerra, Daniele | ||||||||||||
Hinterlegt am: | 17 Jul 2025 09:35 | ||||||||||||
Letzte Änderung: | 04 Aug 2025 15:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags