elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Cluster-based user segmentation to optimize needs-oriented transport services

Gorecki, Chris-Leon und Lau, Merle und Wasic, Catharina und Dotzauer, Mandy (2025) Cluster-based user segmentation to optimize needs-oriented transport services. In: 27th International Conference on Human-Computer Interaction, HCII 2025, Seiten 216-226. Springer Verlag. 27th International Conference on Human-Computer Interaction, HCII 2025, 2025-06-22 - 2025-06-27, Göteborg, Schweden. doi: 10.1007/978-3-031-94165-8_23. ISBN 978-3-031-94164-1. ISSN 1865-0929.

[img] PDF - Nur DLR-intern zugänglich
848kB

Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-031-94165-8_23

Kurzfassung

The trend of individualization calls for personalized and accessible public transport services. Existing mobility services often fail to meet these requirements, as personal and context-sensitive travel needs are hardly considered. To enable services to better fit the needs of individuals, we developed a user segmentation method linking traveler characteristics (e.g., age, gender, public transport subscription) with route selection preferences. The segmentation method was comprised of a three-stage modular process. In the first module, user travel data is preprocessed and transformed for cluster analysis. This step addresses the challenges of high dimensionality and mixed data types by applying techniques such as principal component analysis, factor analysis for mixed data or simple feature selection. The choice of technique depended on the extent of the challenges. In the second module, unsupervised machine learning techniques were applied to cluster users based on the extracted components. The exact choice of the clustering technique depends on the data characteristics generated by the previous step. In the third module, relationships between user groups and route choices were analyzed. Routes were systematically classified based on attributes such as fastest connection or fewest transfers. Different statistical analyses were then conducted to examine the relationships between user clusters and the classified routes. The connections between the users clustered in step two and the classified routes were then analyzed using regression analyses. Applying the method on a dataset revealed that there is a difference in route selection between the clusters.

elib-URL des Eintrags:https://elib.dlr.de/215184/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Cluster-based user segmentation to optimize needs-oriented transport services
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gorecki, Chris-Leonchris-leon.gorecki (at) dlr.dehttps://orcid.org/0009-0000-9789-8360187925063
Lau, MerleMerle.Lau (at) dlr.dehttps://orcid.org/0000-0003-4852-034XNICHT SPEZIFIZIERT
Wasic, Catharinacatharina.wasic (at) dlr.dehttps://orcid.org/0000-0002-7170-2101187925066
Dotzauer, MandyMandy.Dotzauer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:5 Juni 2025
Erschienen in:27th International Conference on Human-Computer Interaction, HCII 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1007/978-3-031-94165-8_23
Seitenbereich:Seiten 216-226
Verlag:Springer Verlag
Name der Reihe:Communications in Computer and Information Science (2527 CCIS)
ISSN:1865-0929
ISBN:978-3-031-94164-1
Status:veröffentlicht
Stichwörter:User Segmentation, public transport, route selection preferences
Veranstaltungstitel:27th International Conference on Human-Computer Interaction, HCII 2025
Veranstaltungsort:Göteborg, Schweden
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:22 Juni 2025
Veranstaltungsende:27 Juni 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - MoDa - Models and Data for Future Mobility_Supporting Services
Standort: Berlin-Adlershof , Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Informationssysteme und Mobilitätsdienste
Hinterlegt von: Gorecki, Chris-Leon
Hinterlegt am:15 Jul 2025 08:12
Letzte Änderung:30 Jul 2025 12:15

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.