Beiler, Marten und Bauer, Niklas Michael und Baumgartner, Jörg und Braun, Moritz (2025) COMPARATIVE EVALUATION OF MACHINE LEARNING MODELS AND SUPER ELLIPSE CRITERION FOR FATIGUE LIFE PREDICTION OF WELDED JOINTS UNDER MULTIAXIAL LOADING. Fourteenth International Conference on Multiaxial Fatigue and Fracture (ICMFF14), 2025-06-18 - 2025-06-20, Würzburg, Deutschland. doi: 10.48447/ICMFF14-2025-40.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Evaluating the fatigue life of welded joints under multiaxial loading is a key challenge in structural engineering. This study explores machine learning (ML) methods for predicting fatigue life and compares their performance against the novel super ellipse criterion, which is an analytical approach that aims to improve current design standard methods (e.g., Eurocode 3, IIW). Using a dataset of uniaxial and multiaxial fatigue tests with varying phase angles, ML models-including artificial neural networks and XGBoost-are trained on features like stress amplitudes, phase differences, and material properties. Artificial neural networks provide high accuracy, while tree-based models like XGBoost offer better interpretability via model agnostic interpretation using Explainable AI. Results show ML models can outperform traditional criteria, especially under non-proportional loading, but face limitations near the edges of the training data. This work highlights the potential and challenges of ML in fatigue rediction and highlights their value for enhancing the safety and reliability of welded structures.
elib-URL des Eintrags: | https://elib.dlr.de/215083/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | COMPARATIVE EVALUATION OF MACHINE LEARNING MODELS AND SUPER ELLIPSE CRITERION FOR FATIGUE LIFE PREDICTION OF WELDED JOINTS UNDER MULTIAXIAL LOADING | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juni 2025 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.48447/ICMFF14-2025-40 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Fatigue strength assessment, Multiaxial fatigue, Artificial neural network, Extreme gradient boosting, Explainable AI, SHAP analysis | ||||||||||||||||||||
Veranstaltungstitel: | Fourteenth International Conference on Multiaxial Fatigue and Fracture (ICMFF14) | ||||||||||||||||||||
Veranstaltungsort: | Würzburg, Deutschland | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 18 Juni 2025 | ||||||||||||||||||||
Veranstaltungsende: | 20 Juni 2025 | ||||||||||||||||||||
Veranstalter : | German Association for Materials Research and Testing e.V (DVM) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme Institut für Maritime Energiesysteme > Schiffszuverlässigkeit | ||||||||||||||||||||
Hinterlegt von: | Beiler, Marten | ||||||||||||||||||||
Hinterlegt am: | 14 Jul 2025 09:03 | ||||||||||||||||||||
Letzte Änderung: | 14 Jul 2025 09:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags