elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

DATA-DRIVEN AI SURROGATE MODEL FOR RAPID 3D FLOW APPROXIMATION IN AXIAL FANS

Vithanala, Krishna Srinitha und Aulich, Marcel und Voss, Christian und Cavus, Aysegül und Buchwald, Patrick und Herbst, Florian (2025) DATA-DRIVEN AI SURROGATE MODEL FOR RAPID 3D FLOW APPROXIMATION IN AXIAL FANS. In: 70th ASME Turbo Expo 2025: Turbomachinery Technical Conference and Exposition, GT 2025. ASME Turbo Expo 2025, 2025-06-16 - 2025-06-20, Memphis, Tennessee, USA. doi: 10.1115/GT2025-152434.

[img] PDF - Nur DLR-intern zugänglich
3MB

Kurzfassung

Computational fluid dynamics (CFD) simulations are crucial for optimizing engineering designs, but are often computationally expensive and time-consuming. This paper introduces a data-driven AI surrogate model for axial fans that provides rapid approximations of 3D CFD results, significantly reducing the computational resources required for 3D flow solutions. The AI model leverages existing CFD data to learn the complex relationships between geometry, boundary conditions, and flow solutions, allowing it to predict flow fields for new, unseen geometries. This research extends the application of AI surrogate modeling to unstructured data for axial fans in industrial settings, based on previous work with structured data for aircraft compressors. It demonstrates the model’s ability to predict low Mach number, incompressible flows relevant to industrial axial fans, expanding the scope of AI in turbomachinery beyond traditional high-speed aerospace use cases. The flexible model architecture accommodates both structured and unstructured CFD data from a variety of turbomachinery flows. Trained on a design of experiments (DOE) database using XYZ coordinates of geometric surface points, rotational speed, and boundary conditions, the model accurately predicts flow variables such as velocities, pressure, and density. Validation against optimized fan designs shows promising agreement with CFD results, confirming the model’s effectiveness in capturing essential flow features for designs not included in the training.

elib-URL des Eintrags:https://elib.dlr.de/215082/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:DATA-DRIVEN AI SURROGATE MODEL FOR RAPID 3D FLOW APPROXIMATION IN AXIAL FANS
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Vithanala, Krishna Srinithakrishna.vithanala (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Aulich, MarcelMarcel.Aulich (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Voss, ChristianAT-FVNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cavus, Aysegülayseguel.cavus (at) de.ebmpapst.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Buchwald, Patrickpatrick.buchwald (at) de.ebmpapst.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Herbst, FlorianFlorian.Herbst (at) dlr.dehttps://orcid.org/0000-0003-0993-4582192440631
Datum:2025
Erschienen in:70th ASME Turbo Expo 2025: Turbomachinery Technical Conference and Exposition, GT 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1115/GT2025-152434
Status:veröffentlicht
Stichwörter:Artificial Intelligence (AI), Turbomachinery, Deep Neural Networks (DNN), Computational Fluid Dynamics (CFD), Reynolds-averaged Navier–Stokes (RANS) Simulations, Transformer Architecture, Axial Fans, Surrogate Modeling
Veranstaltungstitel:ASME Turbo Expo 2025
Veranstaltungsort:Memphis, Tennessee, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 Juni 2025
Veranstaltungsende:20 Juni 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Flugzeug und Validierung
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Fan- und Verdichter
Hinterlegt von: Vithanala, Krishna Srinitha
Hinterlegt am:22 Sep 2025 19:39
Letzte Änderung:22 Sep 2025 19:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.