elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Regulatory Equivalence of Sensor-derived Models: Bridging Maritime Autonomous Navigation with LiDAR SLAM and S-100 Standards

Pieper, Fynn und Wiards, Hilko (2025) Regulatory Equivalence of Sensor-derived Models: Bridging Maritime Autonomous Navigation with LiDAR SLAM and S-100 Standards. In: International Conference on Maritime Autonomous Systems and Shipping 2025. International Conference on Maritime Autonomous Surface Ships 2025, 2025-10-08 - 2025-10-09, Hamburg, Deutschland.

[img] PDF - Nur DLR-intern zugänglich bis 1 November 2025
826kB

Kurzfassung

Maritime Autonomous Surface Ships (MASS) rely on real-time perception to ensure safe and compliant navigation within dynamic maritime environments. However, regulatory frameworks require an “equivalent level of safety” to human-operated vessels without explicitly defining standards for validating autonomous situational awareness. This paper investigates whether LiDAR-based Simultaneous Localization and Mapping (SLAM) can generate sensor-derived environmental models that align with the geometric and functional safety expectations embedded in the S-100 and specifically the S-101 Electronic Navigational Chart (ENC) standards. We conduct field trials in a harbor and lock scenario using ICP-based SLAM, which is validated against high-precision Terrestrial Laser Scanning (TLS) ground truth to assess geometric accuracy, coverage completeness, structural consistency and topological fidelity to assess regulatory equivalence. Results suggest that SLAM-derived models can complement static ENCs by adding dynamic, situational information that can be audited, thereby addressing key elements of functional safety under IMO guidelines. We argue that integrating validated sensor-based perception as a complementary layer within the S-100 framework provides a viable path to certify MASS navigation systems, helping to connect sensor technologies with existing regulations.

elib-URL des Eintrags:https://elib.dlr.de/215008/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Regulatory Equivalence of Sensor-derived Models: Bridging Maritime Autonomous Navigation with LiDAR SLAM and S-100 Standards
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Pieper, Fynnfynn.pieper (at) dlr.dehttps://orcid.org/0009-0006-7881-4743NICHT SPEZIFIZIERT
Wiards, Hilkohilko.wiards (at) dlr.dehttps://orcid.org/0000-0003-2994-6994NICHT SPEZIFIZIERT
Datum:2025
Erschienen in:International Conference on Maritime Autonomous Systems and Shipping 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:akzeptierter Beitrag
Stichwörter:Maritime Autonomous Surface Ships, autonomous navigation, LiDAR SLAM, situational awareness, S-100 framework, S-101 ENC, regulatory equivalence, functional safety, sensor-based perception, environmental modeling
Veranstaltungstitel:International Conference on Maritime Autonomous Surface Ships 2025
Veranstaltungsort:Hamburg, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 Oktober 2025
Veranstaltungsende:9 Oktober 2025
Veranstalter :German Institute of Navigation e.V. (DGON) und Fraunhofer CML
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - FuturePorts
Standort: Oldenburg
Institute & Einrichtungen:Institut für Systems Engineering für zukünftige Mobilität > Application and Evaluation
Hinterlegt von: Pieper, Fynn
Hinterlegt am:11 Jul 2025 06:03
Letzte Änderung:22 Jul 2025 09:28

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.