elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Utilizing CNNs for classification and uncertainty quantification for 15 families of European fly pollinators

Stark, Thomas und Wurm, Michael und Stefan, Valentin und Wolf, Feliciatas und Taubenböck, Hannes und Knight, Tiffany (2025) Utilizing CNNs for classification and uncertainty quantification for 15 families of European fly pollinators. Helmholtz AI Conference, 2025-06-03 - 2025-06-05, Karlsruhe.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Pollination is vital for biodiversity and food security, yet monitoring pollinators remains challenging. While bees and butterflies have been extensively studied, flies (Diptera) also provide crucial pollination services. However, their classification is difficult due to subtle morphological differences and the limited availability of image datasets. Traditional monitoring methods are costly, time-consuming, and dependent on expert knowledge. Advances in deep learning enable automation in pollinator classification, providing a scalable and efficient alternative. This study explores the use of Convolutional Neural Networks (CNNs) for classifying 15 European pollinating fly families, with a focus on uncertainty quantification to improve prediction reliability. We examine the performance of ResNet18, MobileNetV3, and EfficientNetB4 architectures and evaluate the impact of image cropping on classification accuracy and model confidence. Our dataset consists of 29,374 images sourced from the Global Biodiversity Information Facility (GBIF). Images include full-frame representations and expert-cropped images focusing solely on the fly specimen. A stratified approach was used to ensure balanced representation across the 15 families, with 60% of the images allocated for training, and 20% each for validation and testing. Three CNN architectures, ResNet18, MobileNetV3, and EfficientNetB4, were trained on both full-frame and cropped images. MobileNetV3 (5.4M parameters) was selected for efficiency, ResNet18 (11.3M parameters) for robustness, and EfficientNetB4 (17.6M parameters) for accuracy. To quantify classification uncertainty, we implemented Monte Carlo based uncertainty estimation. Aleatoric uncertainty, stemming from inherent data variability, was assessed using Test-Time Augmentation (TTA). Epistemic uncertainty, reflecting model limitations, was captured through Test-Time Dropout (TTD). Evaluation metrics included overall accuracy (OA), Kappa scores, and mean confidence levels. EfficientNetB4 achieved the highest OA: 90.35% (full-frame) and 95.61% (cropped). ResNet18 reached 88.58% (full-frame) and 93.16% (cropped), while MobileNetV3 scored 88.78% (full-frame) and 93.87% (cropped). Cropping images improved classification accuracy by approximately 5% across all models, demonstrating the importance of targeted image preprocessing for pollinator identification.

elib-URL des Eintrags:https://elib.dlr.de/214990/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Utilizing CNNs for classification and uncertainty quantification for 15 families of European fly pollinators
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stark, ThomasThomas.Stark (at) dlr.dehttps://orcid.org/0000-0002-6166-7541NICHT SPEZIFIZIERT
Wurm, Michaelmichael.wurm (at) dlr.dehttps://orcid.org/0000-0001-5967-1894NICHT SPEZIFIZIERT
Stefan, ValentinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wolf, Feliciatasfelicitas.wolf (at) student.uni-halle.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Knight, Tiffanytiffany.knight (at) idiv.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 Juni 2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Pollination, Deep Learning, Uncertainty Quantification
Veranstaltungstitel:Helmholtz AI Conference
Veranstaltungsort:Karlsruhe
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:3 Juni 2025
Veranstaltungsende:5 Juni 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Stark, Thomas
Hinterlegt am:31 Jul 2025 08:17
Letzte Änderung:04 Sep 2025 14:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.