Niemeijer, Joshua und Ehrhardt, Jan und Uzunova, Hristina und Handels, Heinz (2025) TSynD Targeted Synthetic Data Generation for Enhanced Medical Image Classification. In: Bildverarbeitung für die Medizin 2025 (BVM 2025), Seite 157. Springer. German Conference on Medical Image Computing, 2025-03-09, Regensburg. doi: 10.1007/978-3-658-47422-5_35. ISBN 978-3-658-47422-5. ISSN 1431-472X.
![]() |
PDF
- Nur DLR-intern zugänglich
284kB |
Kurzfassung
Deep learning in medical applications usually faces the problem of limited training data that does not represent most of the relevant distribution. This is due to the fact that, both, the acquisition process of the data is difficult and the labeling of medical data is costly. The former is caused by the complex and expensive nature of medical sensors and strict data privacy laws. The latter is due to the high wages of medical professionals. To overcome this issue common strategies include data augmentation or the use of generative models. Both strategies however have in common that they extend the training distribution in a rather untargeted way. We presented the TSynD approach that allows for a more targeted creation of images.
elib-URL des Eintrags: | https://elib.dlr.de/214970/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | TSynD Targeted Synthetic Data Generation for Enhanced Medical Image Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2 März 2025 | ||||||||||||||||||||
Erschienen in: | Bildverarbeitung für die Medizin 2025 (BVM 2025) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1007/978-3-658-47422-5_35 | ||||||||||||||||||||
Seitenbereich: | Seite 157 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||
Name der Reihe: | Informatik aktuell | ||||||||||||||||||||
ISSN: | 1431-472X | ||||||||||||||||||||
ISBN: | 978-3-658-47422-5 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Synthetic Data, Classification | ||||||||||||||||||||
Veranstaltungstitel: | German Conference on Medical Image Computing | ||||||||||||||||||||
Veranstaltungsort: | Regensburg | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsdatum: | 9 März 2025 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation | ||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme | ||||||||||||||||||||
Hinterlegt von: | Niemeijer, Joshua | ||||||||||||||||||||
Hinterlegt am: | 07 Jul 2025 19:51 | ||||||||||||||||||||
Letzte Änderung: | 05 Sep 2025 11:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags