elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Towards Safer Roads: A Data-Driven Ground-Aerial Fusion Approach for Enhanced Ego-Localization

Ben Zekri, Alaa Eddine und Bahmanyar, Reza und Chaabouni-Chouayakh, Houda (2025) Towards Safer Roads: A Data-Driven Ground-Aerial Fusion Approach for Enhanced Ego-Localization. 37th Internation Cooperation on Theories and Concepts in Traffic Safety (ICTCT), 2025-10-23 - 2025-10-24, Berlin, Germany.

[img] PDF
182kB

Kurzfassung

Accurate localization is crucial for autonomous systems to ensure safe and effective operation on modern roadways. While consumer-grade GPS sensors are widely used, they often fall short due to limitations imposed by satellite geometry, atmospheric disturbances, and multipath interference. These factors can result in errors of several meters, a discrepancy that is unacceptable for the centimeter-level accuracy required for autonomous driving. Inaccurate positioning not only affects navigation, but also increases the risk of collisions, thus undermining road safety. To overcome these challenges, autonomous vehicles are now integrating a variety of sensors such as inertial measurement units, LiDAR, radar, and computer vision to provide a more reliable picture of the environment. These systems combine data streams to improve overall accuracy and resilience to individual sensor failures. Filtering algorithms, including Kalman and particle filters, have been instrumental in refining localization estimates. Computer vision techniques such as visual odometry further mitigate scenarios. More recently, deep learning approaches have emerged as powerful tools capable of learning complex mappings between sensor inputs and precise location outputs. These advances not only enhance autonomous navigation, but also contribute to road safety by reducing the risk of accidents and promoting smoother interactions among all road users. In this work, we develop a robust solution for ego-localization. We propose to create a carefully curated dataset that overcomes current shortcomings by providing centimeter-level GPS annotations, diverse scenarios, and rich temporal dynamics. In addition, we design an innovative architecture that fuses ground-view images with rough GPS localization data to accurately predict true positions.

elib-URL des Eintrags:https://elib.dlr.de/214954/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Towards Safer Roads: A Data-Driven Ground-Aerial Fusion Approach for Enhanced Ego-Localization
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ben Zekri, Alaa Eddinealaa.benzekri (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bahmanyar, Rezareza.bahmanyar (at) dlr.dehttps://orcid.org/0000-0002-6999-714XNICHT SPEZIFIZIERT
Chaabouni-Chouayakh, Houdahouda.chaabouni (at) crns.rnrt.tnNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Ego-localization, Sensor fusion, Aerial imagery, BEV mapping, Traffic safety
Veranstaltungstitel:37th Internation Cooperation on Theories and Concepts in Traffic Safety (ICTCT)
Veranstaltungsort:Berlin, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 Oktober 2025
Veranstaltungsende:24 Oktober 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Ben Zekri, Alaa Eddine
Hinterlegt am:04 Nov 2025 11:32
Letzte Änderung:04 Nov 2025 11:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.