elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Burnt Area Monitoring Using Graph Convolutional Networks Based On Multi-Sensor Satellite Data

Nolde, Michael und Rösch, Moritz und Wilke, Tabea und Faúndez Pinilla, Jorge Ignacio und Aguirre, Paula und Riedlinger, Torsten und Taubenböck, Hannes (2025) Burnt Area Monitoring Using Graph Convolutional Networks Based On Multi-Sensor Satellite Data. ESA Living Planet Symposium 2025, 2025-06-23 - 2025-06-27, Wien, Österreich.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Recent catastrophic wildfire seasons, e.g. in Greece 2023, Canada 2023, and Chile 2023/2024, underscore the critical need for rapid and accurate wildfire data to facilitate emergency response, assess environmental damage, and keep the public informed. Although satellite-based thermal anomaly data is accessible in near real-time (NRT), accurately mapping the areas affected by fires from NRT imagery remains a significant challenge. The proposed approach combines a superpixel segmentation algorithm with both rule-based and deep learning classification techniques to reliably identify burnt areas (BA) in NRT. This method is compatible with a range of optical sensors, from medium to high resolution, and integrates data from diverse sources to continuously refine the detection of burnt areas as active fires unfold. The region of Central Chile, enduring tremendous wildfire events in early 2024, was used as a testing region. An NRT product (DLRBAv2NRT) based on Sentinel-3 OLCI was generated, together with a refined non-time critical product (DLRBAv2NTC). Both products are tested against established global BA products (Copernicus CGLBA31nrt and NASA MCD64A1v061). The DLRBAv2NRT achieved the highest accuracies, outperforming the DLRBAv2NTC product by 5%, the CGLBA31nrt product by 9% and the MCD64A1v061 product by 10% IoU. The DLRBAv2NRT showed the highest sensitivity detecting BA (Recall: 0.78), while MCD64A1v061 produced high number of false negatives (Recall: 0.63). A third variant (DLRBAv2NTCfusion), incorporating results from multiple mid- and high resolution sensors is generated for the Valparaíso focus region. The results are inter-compared with local ground truth data, yielding an IoU of 0.75. The proposed mapping procedure demonstrates a fully-automated, flexible approach to derive burnt area delineations from satellite data in NRT with high accuracy. This allows for high-frequency monitoring of NRT burnt areas on a global scale.

elib-URL des Eintrags:https://elib.dlr.de/214945/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Burnt Area Monitoring Using Graph Convolutional Networks Based On Multi-Sensor Satellite Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Nolde, MichaelMichael.Nolde (at) dlr.dehttps://orcid.org/0000-0002-6981-9730NICHT SPEZIFIZIERT
Rösch, Moritzmoritz.roesch (at) dlr.dehttps://orcid.org/0009-0003-2928-7009NICHT SPEZIFIZIERT
Wilke, TabeaTabea.Wilke (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Faúndez Pinilla, Jorge IgnacioNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Aguirre, PaulaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Riedlinger, TorstenTorsten.Riedlinger (at) dlr.dehttps://orcid.org/0000-0003-3836-614XNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:26 Juni 2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Burnt area monitoring, multi-sensor, multi-resolution, Superpixels, Graph Convolutional Network, Region Adjacency Graph
Veranstaltungstitel:ESA Living Planet Symposium 2025
Veranstaltungsort:Wien, Österreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 Juni 2025
Veranstaltungsende:27 Juni 2025
Veranstalter :European Space Agency
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Innovative Fernerkundungsverfahren, R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Rösch, Moritz
Hinterlegt am:14 Jul 2025 11:01
Letzte Änderung:14 Jul 2025 11:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.